Indian Journal of Pharmaceutical Sciences

Scientific Publication of the Indian Pharmaceutical Association

Volume 69	Num	ber 5 Septembe	r-October 2007		
	CONT	ENTS			
REVIEW ARTICLES		Simultaneous Estimation of Aceclofenac, Para	cetamol and		
Recent Trends in Drug-Likeness Prediction: A Compreh Review of In Silico Methods	ensive	Chlorzoxazone in Tablets G. GARG, SWARNLATA SARAF AND S. SARAF	692-694		
R. U. KADAM AND N. ROY	609-615	Reverse Phase High Performance Liquid Chro			
Biodegradable Polymers: Which, When and Why?		Method for Estimation of Ezetimibe in Bulk and Pharmaceutical Formulations			
V. B. KOTWAL, MARIA SAIFEE, NAZMA INAMDAR AND		S. K. AKMAR, LATA KOTHAPALLI, ASHA THOMAS, SUMITRA JANGAM AND A. D. DESHPANDE	695-697		
KIRAN BHISE	616-625	Synthesis and Antiinflammatory Activity of			
RESEARCH PAPERS		Anthranilic Acid and its Derivatives J. K. JOSHI, V. R. PATEL, K. PATEL, D. RANA, K. SH	ан		
Strong Cation Exchange Resin for Improving Physicoch Properties and Sustaining Release of Ranitidine Hydroc		RONAK PATEL AND RAJESH PATEL	697-699		
S. KHAN, A. GUHA, P. G. YEOLE, AND P. KATARIYA	626-632	RP-HPLC Method for the Determination of Ato calcium and Nicotinic acid in Combined Tablet			
Novel Co-Processed Excipients of Mannitol and Microco Cellulose for Preparing Fast Dissolving Tablets of Glipiz		D. A. SHAH, K. K. BHATT, R. S. MEHTA, M. B. SHANKA	RAND		
S. JACOB, A. A. SHIRWAIKAR, A. JOSEPH, K. K. SRINIVASAN	633-639	S. L. BALDANIA Determination of Etoricoxib in Pharmaceutical	700-703		
Formulation and Optimization of Directly Compressible Modified Release Matrix Tablet	Isoniazid	HPLC Method	Formulations by		
M. C. GOHEL, R. K. PARIKH, M. N. PADSHALA, K. G. SARVAIYA		H. M. PATEL, B. N. SUHAGIA, S. A. SHAH AND I. S. RA	THOD 703-705		
D. G. JENA Effect of Casting Solvent and Polymer on Permeability of	640-645 of	Proceedings of the Symposium of	on Advances		
Propranolol Hydrochloride Through Membrane Controll		in Pulmonary and Nasal Drug Delivery,			
Transdermal Drug Delivery System T. E. G. K. MURTHY AND V. S. KISHORE	646-650	October 2007, Mumbai	y ,		
Preparation of Mucoadhesive Microspheres for Nasal		Albumin Microspheres of Fluticasone Propion	ate Inclusion		
Delivery by Spray Drying MAHALAXMI RATHANANAND, D. S. KUMAR, A. SHIRWAIKAR,		Complexes for Pulmonary Delivery A. A. LOHADE, D. J. SINGH, J. J. PARMAR, D. D. HEGI	DE, M. D. MENON,		
RAVI KUMAR, D. SAMPATH KUMAR AND R. S. PRASAD	651-657	P. S. SONI, A. SAMAD AND R. V. GAIKWAD	707-709		
Effect of Polymers on Crystallo-co-agglomeration of buprofen-Paracetamol: Factorial Design		Design and Development of Thermoreversible Mucoadhesi Microemulsion for Intranasal Delivery of Sumatriptan Succ			
A. PAWAR, A. R. PARADKAR, S. S. KADAM AND K. R. MAHADIK	658-664	R. S. BHANUSHALI AND A. N. BAJAJ	709-712		
nthesis and Antimicrobial Evaluation of Some Novel 2-Imino- (4'-carboxamido pyridyl)-5-Arylidene-4-Thiazolidinones and		Preparation and Characterization of Chitosan Nanoparticles for Nose to Brain Delivery of a Cholinesterase inhibitor			
their Brominated Derivatives P. MISHRA, T. LUKOSE AND S. K. KASHAW	665-668	BHAVNA, V. SHARMA, M. ALI, S. BABOOTA AND J. AL			
Measurement of Urine and Plasma Oxalate with Reusab		Poloxamer Coated Fluticasone Propionate Microparticles for Pul monary Delivery; In Vivo Lung Deposition and Efficacy Studies			
Strip of Amaranthus Leaf Oxalate Oxidase NISHA SHARMA, MINAKSHI SHARMA, V. KUMAR AND		D. J. SINGH, J. J. PARMAR, D. D. HEGDE, M. D. MENON, P. S. SONI, A. SAMAD, AND R. V. GAIKWAD 714-71 Sustained Release Budesonide Liposomes: Lung Deposition			
C. S. PUNDIR	669-673				
SHORT COMMUNICATIONS		and Efficacy Evaluation	ing Deposition		
Simultaneous HPLC Estimation of Omeprazole and		J. J. PARMAR, D. J. SINGH, D. D. HEGDE, M. D. MENO A. SAMAD AND R. V. GAIKWAD	N, P. S. SONI, 716-717		
Domperidone from Tablets	074 070	Generation of Budesonide Microparticles by Spray Drying			
LAKSHMI SIVASUBRAMANIAN AND V. ANILKUMAR Isolation and Evaluation of Fenugreek Seed Husk as a	674-676	Technology for Pulmonary Delivery S. R. NAIKWADE AND A. N. BAJAJ	717-721		
Granulating Agent		Microemulsion of Lamotrigine for Nasal Delive			
AMELIA AVACHAT, K. N. GUJAR, V. B. KOTWAL AND SONALI PA Synthesis and <i>In Vitro</i> Efficacy of some Halogenated Im		A. J. SHENDE, R. R. PATIL AND P. V. DEVARAJAN	721-722		
Derivatives as Potential Antimicrobial Agents A. K. HALVE, DEEPTI BHADAURIA, B. BHASKAR, R. DUBEY AND	D	Development of a pMDI Formulation Containin E. ROBINS, G. BROUET AND S. PRIOLKAR	722-724		
ASUDHA SHARMA	680-682	Development of a pMDI Formulation Containin E. ROBINS, G. WILLIAMS AND S. PRIOLKAR	19 Salbutamoi 724-726		
Atorvastatin Calcium and Ezetimibe in Tablets S. S. SONAWANE, A. A. SHIRKHEDKAR, R. A. FURSULE AND	693 694	Aqua Triggered <i>In Situ</i> Gelling Microemulsion R. R. SHELKE AND P. V. DEVARAJAN	for Nasal Delivery 726-727		
S. J. SURANA High Performance Thin Layer Chromatographic Estimat	683-684 i on of	<i>In vivo</i> Performance of Nasal Spray Pumps in Volunteers By SPECT-CT Imaging	Human		
Lansoprazole and Domperidone in Tablets J. V. SUSHEEL, M. LEKHA AND T. K. RAVI		S. A. HAZARE, M. D. MENON, P. S. SONI, G. WILLIAM			
Antimicrobial Activity of <i>Helicteres isora</i> Root	684-686	G. BROUET	728-729		
S. VENKATESH, K. SAILAXMI, B. MADHAVA REDDY AND	687-689	Nasal Permeation Enhancement of Sumatripta through Nasal Mucosa	n Succinate		
MULLANGI RAMESH Synthesis and Antibacterial Activity of 2-phenyl-3,5-dip		S. S. SHIDHAYE, N. S. SAINDANE, P. V. THAKKAR, S. V. J. KADAM	B. SUTAR AND 729-731		

Synthesis and Antibacterial Activity of 2-phenyl-3,5-diphe-nyl (substituted) -6-aryl-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4djthiazoles

S. K. SAHU, S. K. MISHRA, R. K. MOHANTA, P. K. PANDA AND MD. AFZAL AZAM

Formulation Development of Eucalyptus Oil Microemulsion for Intranasal Delivery N. G. TIWARI AND A. N. BAJAJ 731-733

729-731

689-692

V. J. KADAM

Simultaneous HPLC Estimation of Omeprazole and Domperidone from Tablets

LAKSHMI SIVASUBRAMANIAN* AND V. ANILKUMAR¹

Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur - 603 203, India, ¹Department of Pharmaceutical Analysis, Vel's College of Pharmacy, Chennai – 600 043, India

The present work describes a simple reverse phase HPLC method for the determination of omeprazole and domperidone from tablet formulations. The determination was carried out on a Hypersil, ODS, C-18 (150×4.6 mm, 5 micron) column using a mobile phase of methanol:0.1 M ammonium acetate (pH 4.9) (60:40). The flow rate and runtime were 1 ml/min and 10 min, respectively. The eluent was monitored at 280 nm. The method was reproducible, with good resolution between omeprazole and domperidone. The detector response was found to be linear in the concentration range of 10-60 μ g/ml for omeprazole and 5-30 μ g/ml for domperidone.

Omeprazole is chemically (RS)-5-methoxy-2-[[(4methoxy-3,5-dimethylpyridin-2yl) methyl] sulphinyl]-1H-benzimidazole. In pharmaceutical preparations, the compound is used as a proton pump inhibitor in the treatment of peptic ulcer^{1,2}. Domperidone is chemically 5-chloro-1-[1-[3-2,3-dihydro-2-oxo-1Hbenzimidazol-1-yl)propyl]-piperidin-4-yl]-2,3-dihydro-1H-imidazol-2-one and is used as an antiemetic^{3,4}. There have been numerous publications describing various methods for the quantification of these compounds individually or in combination with other drugs. Recently omeprazole has been successfully quantified in formulation by high performance liquid chromatography with coulometric detection⁵. HPLC using solid phase extraction was reported for the analysis of omeprazole and its metabolites in human plasma⁶. (RP)-ion pair HPLC method was utilized successfully in the separation of domperidone and cinnarazine in pharmaceutical preparations7. Whilst all of the above listed procedures have been successfully validated and applied in routine analysis, none of them addresses simultaneous quantification of both the components in one step. The present paper describes the development of RP-HPLC method using isocratic mobile phase that offers certain advantages in its simplicity and time saving.

Standard samples of omeprazole and domperidone, which were prepared from reference standard procured

*For correspondence E-mail: lakshmiss@hotmail.com from a pharmaceutical company (Sipra Laboratories Ltd, Hyderabad). HPLC grade methanol manufactured by E. Merck was procured from commercial sources. Double distilled water was prepared in the laboratory. Tablet formulations, Domstal–O, Domstal–RD (Torrent laboratories, Ahmedabad) and Domril–O (Monokem Laboratories, Ahmedabad) containing both omeprazole and domperidone were obtained from local market.

A Shimadzu HPLC (Kyoto, Japan) system was used coupled with SPD 10A UV detector. Separations were carried out on a Hypersil B BDS C18 column (250×4.6 mm I.D) packed with 5 μ particle size as the stationary phase. The mobile phase consisting of methanol and ammonium acetate buffer (60:40) was pumped at a flow rate 1 ml per min, the detection was monitored at 280 nm and the run time was 10 min.

Omeprazole and domperidone (50 mg each) were weighed accurately in two 100 ml volumetric flasks separately and both standards were dissolved in about 30 ml of solvent solution (60 volumes of water and 40 volumes of methanol). The volume was made up to 100 ml with solvent solution (stock solution). In case of omeprazole varying amounts (1, 2, 3, 4, 5 and 6 ml) of the above solution (500 μ g/ml) was taken in six different 50 ml volumetric flasks and the volume was made upto the mark with the solvent solution. An aliquot of 20 μ l of the solution from each flask was injected two times. In case of domperidone 10 ml was taken from stock solution (500 μ g/ml) and diluted to 100 ml with the solvent solution (50 μ g/ml)

ml). Varying amounts (1, 2, 3, 4, 5 and 6 ml) of the above solution (50 μ g/ml) was taken in six different 10 ml volumetric flasks and the volume was made upto the mark with the solvent solution. An aliquot of 20 μ l of the solution from each flask was injected two times. Calibration curves were constructed by plotting mean peak areas against the corresponding drug concentrations. The detector response was found to be linear in the concentration range of 10-60 μ g/ml for omeprazole and 5-30 μ g/ml for domperidone.

Twenty tablets were powdered finely. A quantity equivalent to two tablets was transferred to a 100 ml volumetric flask and 30 ml of solvent solution was added. The flask was shaken for 15 min and then contents were diluted to 100 ml and filtered through Whatman No.1 filter paper. One ml of this solution was then diluted to 10 ml with solvent solution. Results of the triplicate analysis are given in Table 1.

This method was validated for statistical parameters i.e. precision, accuracy, specificity, linearity and range, stability of analytical solutions and ruggedness criteria. Results of the method validation experiments are given in Table 2. The precision of the method was determined by knowing percentage RSD of means of three replicate solutions of all the three independent samples.

TABLE 1: ANALYSIS OF TABLETS CONTAINING OMEPRAZOLE AND DOMPERIDONE

Formulation	Label content (mg/tablet)	Found	drug	Standard deviation
			(mg/tablet)	found
Omeprazole				
Brand 1	10	10.04	100.4	0.56
Brand 2	20	20.12	100.7	0.57
Brand 3	20	19.97	99.8	0.62
Domperidone				
Brand 1	10	9.96	99.6	0.63
Brand 2	10	9.94	99.4	0.55
Brand 3	10	10.13	101.3	0.62

The accuracy of method is determined by adding known amount of standard to that of sample (above and below the normal level) at 3 different levels to cover both above and below (75 to 125%) the normal levels expected in the sample. The normal expected level for the assay of omeprazole and domperidone is about 20 μ g/ml. So the study range was 15, 20 and 25 μ g/ml for both.

The linearity of analytical method was studied by analyzing response of standard with predetermined concentration range, linearity curve was plotted for response areas against the concentration of the solution. Regression coefficient was calculated using above plot. For omeprazole, prepared solutions were within concentration range of 10 to 50 μ g/ml at 5 constant consecutive concentration levels i.e. 10, 20, 30, 40 and 50 μ g/ml. For domperidone, prepared solutions were within concentration range of 5 to 30 μ g/ml at constant consecutive concentration range of 5 to 30 μ g/ml at constant consecutive concentration levels i.e. 5, 10, 15, 20, 25 and 30 μ g/ml. The regression coefficient of area of above consecutive concentrations was calculated.

The stability of analytical solutions of the method studied by a series of samples and standards were prepared and analysed immediately. They were stored at normal lab conditions and in a dark refrigerator, then reanalyzed 120 h later against freshly prepared standard solutions. The ruggedness of analytical method for omeprazole and domperidone in assay determination was studied by analyzing the samples by two sets. (i.e. different analyst, different reagents and solutions and different days).

A typical chromatogram obtained in the present investigation is shown in fig. 1. The results obtained were summarized in Table 1. Prior to the analysis, the method was subjected to system suitability tests.

TABLE 2: RESULTS OF METHOD VALIDATION EXPERIMENTS OF OMEPRAZOLE AND DOMPERIDONE

Performance parameters		Results	Acceptance limit
Precision	Omeprazole	1.94%	NMT 2.0% RSD
	Domperidone	1.96%	
Accuracy	Omeprazole	3.15%	% Bias NMT 5%
	Domperidone	2.13%	
Linearity (Regression Coefficient - r)	Omeprazole	Linear (r=0.996)	Linear NLT 0.995%
	Domperidone	Linear (r=0.998)	
Stability of analytical solutions (Normal Conditions)	Omeprazole	0.88%	NMT 2.0% RSD
	Domperidone	0.95%	
Stability of analytical solutions (in a dark refrigerator)	Omeprazole	0.65%	NMT 2.0% RSD
	Domperidone	0.76%	
Ruggedness	Omeprazole	0.56%	NMT 2.0% RSD
	Domperidone	0.63%	

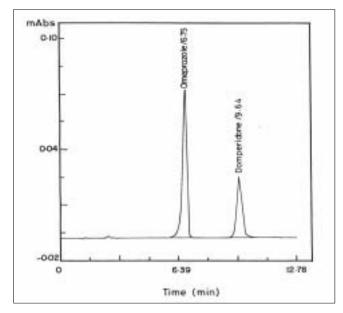


Fig. 1: Standard chromatogram of omeprazole and domperidone

The resolution factor was found to be 6.55, which indicated that there is good resolution between omeprazole and domperidone. This method is highly sensitive to estimate omeprazole and domperidone in tablet formulations.

The statistical parameters in method validation studies for precision, accuracy, specificity, stability of analytical solutions and ruggedness were justified the validity of the proposed method. The results of the assay and method validation studies given in Tables 1 and 2 have shown that the method is simple, accurate and precise and non-interference from tablet excipients.

ACKNOWLEDGEMENTS

The authors are thankful to CEAL Labs, Chennai for providing facilities.

REFERENCES

- 1. Indian Pharmacopoeia, Vol. 1, The Controller of Publications, Delhi, 1996, 532.
- The United States Pharmacopoeia, Vol. XXIV, Supplement 7, The U.S. Pharmacopoeia Convention, Inc. Rockville, MD, 2000.
- 3. British Pharmacopoeia, Vol.1, The British Pharmacopoeia Commission, London, 2001.
- Reynolds, J.E.F., Eds., In; Martindale: The Extra Pharmacopoeia, 33rd Edn., The Pharmaceutical Press, London, 2002.
- 5. Sluggett, G.W., Stong, J.D., Adams, J.H and Zhao, Z., J. Pharm. Biomed. Anal., 2001, 25.
- Motevalian, M., Saeedi, G., Keyhanfar, F., Teyebi, L and Mahmoudian, M., Pharm. Pharmacol. Commun, 1983, 278, 311.
- 7. Argekar, A.P and Shah, S.J., J. Pharm. Biomed. Anal., 1999,19, 813.
- 8. Reviewer Guidance: Validation of Chromatographic Methods, Center for Drug Evaluation and Research (CDER), PDA, Incorporation Publication Service, 1994.

Accepted 2 October 2007 Revised 24 March 2007 Received 21 July 2005 Indian J. Pharm. Sci., 2007, 69 (5): 674-676