Indian Journal of Pharmaceutical Sciences

Scientific Publication of the Indian Pharmaceutical Association

Volume 69	Num	ber 5 Septembe	r-October 2007		
	CONT	ENTS			
REVIEW ARTICLES		Simultaneous Estimation of Aceclofenac, Para	cetamol and		
Recent Trends in Drug-Likeness Prediction: A Comprehensive Review of <i>In Silico</i> Methods		Chlorzoxazone in Tablets G. GARG, SWARNLATA SARAF AND S. SARAF 692-694			
R. U. KADAM AND N. ROY	609-615	Reverse Phase High Performance Liquid Chro			
Biodegradable Polymers: Which, When and Why?		Method for Estimation of Ezetimibe in Bulk and Pharmaceutical Formulations			
V. B. KOTWAL, MARIA SAIFEE, NAZMA INAMDAR AND		S. K. AKMAR, LATA KOTHAPALLI, ASHA THOMAS, SUMITRA JANGAM AND A. D. DESHPANDE	695-697		
KIRAN BHISE	616-625	Synthesis and Antiinflammatory Activity of			
RESEARCH PAPERS		Anthranilic Acid and its Derivatives J. K. JOSHI, V. R. PATEL, K. PATEL, D. RANA, K. SH	ан		
Strong Cation Exchange Resin for Improving Physicoch Properties and Sustaining Release of Ranitidine Hydroc		RONAK PATEL AND RAJESH PATEL	697-699		
S. KHAN, A. GUHA, P. G. YEOLE, AND P. KATARIYA	626-632	RP-HPLC Method for the Determination of Ato calcium and Nicotinic acid in Combined Tablet			
Novel Co-Processed Excipients of Mannitol and Microcrystalline Cellulose for Preparing Fast Dissolving Tablets of Glipizide		D. A. SHAH, K. K. BHATT, R. S. MEHTA, M. B. SHANKAR AND			
S. JACOB, A. A. SHIRWAIKAR, A. JOSEPH, K. K. SRINIVASAN	633-639	S. L. BALDANIA Determination of Etoricoxib in Pharmaceutical	700-703		
Formulation and Optimization of Directly Compressible Modified Release Matrix Tablet	Isoniazid	HPLC Method	Formulations by		
M. C. GOHEL, R. K. PARIKH, M. N. PADSHALA, K. G. SARVAIYA		H. M. PATEL, B. N. SUHAGIA, S. A. SHAH AND I. S. RA	THOD 703-705		
D. G. JENA Effect of Casting Solvent and Polymer on Permeability of	640-645 of	Proceedings of the Symposium of	on Advances		
Propranolol Hydrochloride Through Membrane Controlled		in Pulmonary and Nasal Drug Delivery,			
Transdermal Drug Delivery System T. E. G. K. MURTHY AND V. S. KISHORE	646-650	October 2007, Mumbai	y ,		
Preparation of Mucoadhesive Microspheres for Nasal		Albumin Microspheres of Fluticasone Propion	ate Inclusion		
Delivery by Spray Drying MAHALAXMI RATHANANAND, D. S. KUMAR, A. SHIRWAIKAR,		Complexes for Pulmonary Delivery A. A. LOHADE, D. J. SINGH, J. J. PARMAR, D. D. HEGI	DE, M. D. MENON,		
RAVI KUMAR, D. SAMPATH KUMAR AND R. S. PRASAD	651-657	P. S. SONI, A. SAMAD AND R. V. GAIKWAD	707-709		
Effect of Polymers on Crystallo-co-agglomeration of Ibuprofen-Paracetamol: Factorial Design		Design and Development of Thermoreversible Microemulsion for Intranasal Delivery of Suma	Mucoadhesive		
A. PAWAR, A. R. PARADKAR, S. S. KADAM AND K. R. MAHADIK	658-664	R. S. BHANUSHALI AND A. N. BAJAJ	709-712		
Synthesis and Antimicrobial Evaluation of Some Novel 3-(4'-carboxamido pyridyl)-5-Arylidene-4-Thiazolidinone		Preparation and Characterization of Chitosan Nanoparticles for Nose to Brain Delivery of a Cholinesterase inhibitor			
their Brominated Derivatives P. MISHRA, T. LUKOSE AND S. K. KASHAW	665-668	BHAVNA, V. SHARMA, M. ALI, S. BABOOTA AND J. AL			
Measurement of Urine and Plasma Oxalate with Reusab		Poloxamer Coated Fluticasone Propionate Mic monary Delivery; In Vivo Lung Deposition and			
Strip of Amaranthus Leaf Oxalate Oxidase NISHA SHARMA, MINAKSHI SHARMA, V. KUMAR AND		D. J. SINGH, J. J. PARMAR, D. D. HEGDE, M. D. MENO	D. D. HEGDE, M. D. MENON, P. S. SONI,		
C. S. PUNDIR	669-673	A. SAMAD, AND R. V. GAIKWAD Sustained Release Budesonide Liposomes: Lu	714-715		
SHORT COMMUNICATIONS		and Efficacy Evaluation	ing Deposition		
Simultaneous HPLC Estimation of Omeprazole and		J. J. PARMAR, D. J. SINGH, D. D. HEGDE, M. D. MENO A. SAMAD AND R. V. GAIKWAD	N, P. S. SONI, 716-717		
Domperidone from Tablets	074 070	Generation of Budesonide Microparticles by S			
LAKSHMI SIVASUBRAMANIAN AND V. ANILKUMAR Isolation and Evaluation of Fenugreek Seed Husk as a	674-676	Technology for Pulmonary Delivery S. R. NAIKWADE AND A. N. BAJAJ	717-721		
Granulating Agent		Microemulsion of Lamotrigine for Nasal Delive			
AMELIA AVACHAT, K. N. GUJAR, V. B. KOTWAL AND SONALI PA Synthesis and <i>In Vitro</i> Efficacy of some Halogenated Im		A. J. SHENDE, R. R. PATIL AND P. V. DEVARAJAN	721-722		
Derivatives as Potential Antimicrobial Agents A. K. HALVE, DEEPTI BHADAURIA, B. BHASKAR, R. DUBEY ANI	D	Development of a pMDI Formulation Containin E. ROBINS, G. BROUET AND S. PRIOLKAR	722-724		
VASUDHA SHARMA Simultaneous Spectrophotometric Estimation of	680-682	Development of a pMDI Formulation Containin E. ROBINS, G. WILLIAMS AND S. PRIOLKAR	19 Salbutamol 724-726		
Atorvastatin Calcium and Ezetimibe in Tablets S. S. SONAWANE, A. A. SHIRKHEDKAR, R. A. FURSULE AND	683 684	Aqua Triggered <i>In Situ</i> Gelling Microemulsion R. R. SHELKE AND P. V. DEVARAJAN	for Nasal Delivery 726-727		
S. J. SURANA High Performance Thin Layer Chromatographic Estimat	683-684 i on of	<i>In vivo</i> Performance of Nasal Spray Pumps in Volunteers By SPECT-CT Imaging	Human		
Lansoprazole and Domperidone in Tablets J. V. SUSHEEL, M. LEKHA AND T. K. RAVI		S. A. HAZARE, M. D. MENON, P. S. SONI, G. WILLIAM			
Antimicrobial Activity of <i>Helicteres isora</i> Root	684-686	G. BROUET	728-729		
S. VENKATESH, K. SAILAXMI, B. MADHAVA REDDY AND	687-689	Nasal Permeation Enhancement of Sumatripta through Nasal Mucosa	n Succinate		
MULLANGI RAMESH Synthesis and Antibacterial Activity of 2-phenyl-3,5-dip		S. S. SHIDHAYE, N. S. SAINDANE, P. V. THAKKAR, S. V. J. KADAM	B. SUTAR AND 729-731		

Synthesis and Antibacterial Activity of 2-phenyl-3,5-diphe-nyl (substituted) -6-aryl-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4djthiazoles

S. K. SAHU, S. K. MISHRA, R. K. MOHANTA, P. K. PANDA AND MD. AFZAL AZAM

Formulation Development of Eucalyptus Oil Microemulsion for Intranasal Delivery N. G. TIWARI AND A. N. BAJAJ 731-733

729-731

689-692

V. J. KADAM

Reverse Phase High Performance Liquid Chromatography Method for Estimation of Ezetimibe in Bulk and Pharmaceutical Formulations

S. K. AKMAR, LATA KOTHAPALLI*, ASHA THOMAS, SUMITRA JANGAM AND A. D. DESHPANDE Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune - 411 018, India

A rapid, precise, economical and accurate HPLC method for estimation of ezetimibe in bulk and pharmaceutical formulations has been developed. The chromatographic resolution of ezetimibe was achieved using acetonitrile:0.02 M potassium dihydrogen orthophosphate buffer (72:28 v/v) as the mobile phase with UV detection at 232 nm and C8 kromasil 5 μ column. The flow rate was 1 ml/min. Results of the analysis were validated statistically and by recovery studies and were found to be satisfactory.

Key words: Ezetimibe, RPHPLC

Ezetimibe belongs to one of the new class of lipidlowering agents known as cholesterol absorption inhibitors that selectively inhibits the intestinal absorption of cholesterol and related phytosterols. Chemically ezetimibe is 1-(4-fluorophenyl)-3(R)-[3-(4-fluorophenyl)-3(S)-hydroxypropyl]-4(S)-(4hydroxyphenyl)-2-azetidinone¹.

It is clinically useful in the treatment of primary hypercholesterolemia monotherapy, homozygous familial hypercholesterolemia and homozygous sitosterolemia^{2,3}. It is not official in any of the pharmacopoeias. It is listed in The Merck Index, and Martindale, The Complete Drug Reference^{4,5}. The literature survey revealed only one RP-HPLC method reported for the determination of ezetimibe in pharmaceutical dosage forms using C18 column⁶. In this present study an attempt was made to develop an alternative rapid and economical RP-HPLC⁷ method for estimation of ezetimibe in bulk and pharmaceutical formulations with better sensitivity, precision and accuracy using C8 column and UV detector.

A Merck Hitachi Lachrom HPLC system with L-7400 UV detector having scanning range of 190 to 660 nm and L-7100 pump was used. Ezetimibe was obtained from Hetero Labs Limited, Hyderabad as a gift sample. Tablets of 10 mg strength were procured from local pharmacy of two commercial

*For correspondence E-mail: hemanthip@yahoo.co.in brands. Acetonitrile, water and potassium dihydrogen orthophosphate buffer used were of HPLC grade and procured from Qualigens Fine Chemicals, Mumbai. Chromatographic variables were optimized to achieve precise and reproducible retention (Table 1). The mobile phase consisting of acetonitrile:0.02 m potassium dihydrogen orthophosphate buffer in the ratio 72:28 v/v was selected. 10 mg of the drug was weighed accurately and dissolved in 100 ml of mobile phase to give standard stock solution of concentration 100 µg/ml. The mobile phase and standard stock solution were filtered through 0.45 μ and 0.2 μ membrane filters, respectively. Various dilutions of ezetimibe in the concentration of 10, 15, 20, 25, 30, 35, 40 and 45 μ g/ml were prepared. The dilution were injected through rheodyne injector with twenty microlitres sample loop into the chromatographic system at flow rate 1 ml/min. Ezetimibe was eluted at 4.24 min as shown in fig. 1. The calibration curve of the peak area Vs concentration of ezetimibe was found to be linear and in adherence to Beer-Lambert's

TABLE 1: OPTIMIZED	CHROMATOGRAPHIC
CONDITIONS	

Parameters	Optimized condition	
Mobile phase	Acetonitrile:0.02 M Potassium	
	dihydrogen orthophosphate buffer	
	(72:28 v/v)	
Column	Kromasil C8 (5µ)	
Flow rate	1 ml/min	
Detection	232 nm in UV detector	
Injection volume	20 µl	
Temperature	Ambient	
Retention time	4.24 min	
Run time	10 min	

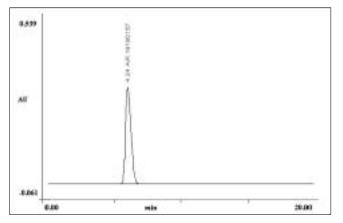


Fig. 1: HPLC chromatogram of ezetimibe

law over the concentration range of 10-45 μ g/ml. The optical parameters are given in Table 2.

For the estimation of ezetimibe in tablet formulation, twenty tablets of both brands T1, Ezedoc (Lupin) and T2, Filet (Emcure) were weighed and triturated to fine powder. Tablet powder equivalent to 10 mg of ezetimibe was weighed and dissolved in 100 ml mobile phase for each brand separately. It was kept for ultrasonication for 45 min. This was then filtered through Whatman filter paper No. 41 and 0.2 μ membranes filter to get stock solution of concentration of 100 μ g/ml. From these stock solutions various dilutions were made with the mobile phase to get final sample solution of different concentrations, which were analyzed. The concentration of the drug

TABLE 2: VALIDATION AND SYSTEM SUITABILITY	
STUDIES	

Parameter	Ezetimibe		
Linearity range (µg/ml)	10-45		
Slope	675255±243.796		
Intercept	-536939±8465.044		
Correlation coefficient	0.9996		
Limit of detection (µg/ml)	0.0413		
Limit of quantitation (µg/ml)	0.1253		
Retention time (min)	4.24±0.01155		
Robustness	Robust		
Precision (% RSD)			
Inter-day (n=3)	0.7727		
Intra day (n=3)	0.7794		
Tailing factor	0.65±0.0075		
Theoretical Plates	179776		
Mean % recovery	99.66±0.606		

in tablet sample solution was calculated by comparing peak area of standard chromatogram of ezetimibe. The results of the assay procedure are given in Table 3.

Recovery studies were carried out at three different levels i.e. 80%, 100% and 120% by adding the pure drug to previously analyzed sample as per ICH guidelines^{8,9}, From the amount of drug found, percentage recovery was calculated (Table 2), which was found to be satisfactory. Repeatability of measurement of the peak area was done to confirm the interday, intraday precision of the method (Table 2). Robustness of the method was studied by introducing small deliberate changes in the flow rate, composition of mobile phase and temperature. The variation in flow rate done was 1±0.1 ml/min and percentage of acetonitrile in mobile phase 72±2% and temperature was altered $25\pm1^\circ$. With the change in flow rate the RT was found to be 4.24±0.155 and tailing factor was 0.65±0.0153. Variation done in the mobile phase gave RT of 4.24±0.185 and tailing factor was 0.65±0.04 similarly alteration in the temperature gave RT of 4.25±0.015 and tailing factor 0.65±0.04.this values indicate the method is robust.

The results of tablet analysis and recovery studies obtained by the proposed method were validated by statistical evaluation (Table 3). The percentage coefficient of variation was found to be 0.7093 for tablet formulation T1 and 0.4543 for tablet formulation T2, respectively. The low percentage coefficient of variation value indicating the suitability of this method for routine analysis of ezetimibe in pharmaceutical formulation dosage forms. The results of recovery studies showed percentage recovery to be 99.66 \pm 0.0606 with the percentage coefficient of variation less than 2% indicating high degree of accuracy and precision of the method. (Table 3)

ACKNOWLEDGEMENTS

We are deeply indebted to Hetero Labs Limited, Hyderabad for providing us the gift sample of the pure drug and to Principal, Dr. D. Y. Patil Institute of pharmaceutical Sciences and Research, Pimpri, Pune.

Tablet formulation	Label claim (mg)	Amount found (mg)*	%*	SD*	COV*	SE*
T1	10	9.971	99.71	0.7072	0.7093	0.2887
T2	10	10.050	100.05	0.4566	0.4543	0.1864

T1 and T2 are brands of two different tablet formulations. *The results are the mean of six readings (n = 6)

REFERENCES

- Rosenblum SB, Huynh T. Afonso A, Davis HRJr, Yumibe N, Clader JW, Burnett DA. A designed, potent, orally active inhibitors of cholesterol absorption. J Med Chem 1998;41:973-80.
- Heek MV. In Vivo metabolism-based discovery of a potent cholesterol absorption inhibitor. J Pharmacol Exp Ther 1997;283:157.
- 3. Dujovne A. Efficacy and safety of a potent new selective cholesterol absorption inhibitor, ezetimibe, in patients with primary hypercholesterolemia. J Cardiol 2002;90:1092-7.
- 4. Budavari S, editor. The Merck Index, 13th ed. Merck and Co., Inc: Whitehouse Station, NJ; 2001. p. 693.
- 5. Sweetman SC, editor. *In*; Martindale, The Complete Drug Reference, 34th ed. The Pharmaceutical Press: London; 2002. p. 914.
- Sistla R. Tata VS, Kashyap YV, Chandrasekar D, Diwan PV. Development and validation of reversed-phase HPLC method for the determination of Ezetimibe in pharmaceutical dosage forms. J Pharm

Biomed Anal 2005;39:517-22.

- Sethi PD. *In*; HPLC high performance liquid chromatography, quantitative analysis of pharmaceutical formulations, 1st ed. CBS Publishers and Distributors: New Delhi; 2001. p. 116-20.
- International Conference on Harmonisation, ICH Harmonised Tripartite Guideline-Text on Validation of Analytical Procedures. Fed Regist 1995;60:11260.
- International Conference on Harmonisation, ICH Harmonised Tripartite Guideline-Validation of Analytical Procedures: Methodology. Fed Regist 1997;62:27463.

Accepted 14 October 2007 Revised 9 April 2007 Received 16 May 2006 Indian J. Pharm. Sci., 2007, 69 (5): 695-697