Indian Journal of Pharmaceutical Sciences

Scientific Publication of the Indian Pharmaceutical Association

Indexed in Ind MED, EMBASE/Excerpta Medica, International Pharmaceutical Abstracts, Chemical Abstracts.

Volume 69

Number 6

November-December 2007

CONTENTS

REVIEW ARTICLES

Cholesteryl Ester Transfer Protein: A Potential Target for	the
Treatment of Coronary Artery Disease HARSHA PATEL, JIGNA SHAH, SUNITA PATEL AND	
I. S. ANAND	735-740
Properties and Formulation of Oral Drug Delivery System	is of
Protein and Peptides A. SEMALTY, MONA SEMALTY, R. SINGH, S. K. SARAF AND	
SHUBHINI SARAF	741-747
RESEARCH PAPERS	
Fabrication and Evaluation of Asymmetric Membrane Os Pump	motic
C. S. CHAUHAN, M. S. RANAWAT AND P. K. CHOUDHURY	748-752
Studies of Disintegrant Properties of Seed Mucilage of O	cimum
<i>gratissimum</i> RAVIKUMAR, A. A. SHIRWAIKAR, ANNIE SHIRWAIKAR,	
S. LAKHSHMANA PRABU, R. MAHALAXMI, K. RAJENDRAN AND	
C. DINESH KUMAR	753-758
Simultaneous Spectroscopic Estimation of Ezetimibe and	k
Simvastatin in Tablet Dosage forms S. J. RAJPUT AND H. A. RAJ	759-762
Formulation and Optimization of Carbamazepine Floating Tablets	J
D. M. PATEL, N. M. PATEL, N. N. PANDYA	
AND P. D. JOGANI	763-767
Effects of <i>Medicago sativa</i> on Nephropathy in Diabetic Ra	ats
M. S. MEHRANJANI, M. A. SHARIATZADEH, A. R. DESFULIAN,	760 770
M. NOORI, M. H. ABNOSI AND Z. H. MOGHADAM	768-772
Development of Hospital Formulary for a Tertiary Care Te Hospital in South India	acning
R. J. D'ALMEIDA, LEELAVATHI D. ACHARYA, PADMA G. M. RAO	,
J. JOSE AND RESHMA Y. BHAT	773-779
Simultaneous Spectrophotometric Estimation of Rosiglitazone Maleate and Glimepiride in Tablet Dosage Forms	
ANJU GOYAL AND I. SINGHVI	780-783
Preparation, Characterization and Antimicrobial Activity	of
Acrylate Copolymer Bound Amoxycillin	
J. S. PATEL, H. R. PATEL, N. K. PATEL AND D. MADAMWAR	784-790
Haematinic Evaluation of <i>Lauha Bhasma</i> and <i>Mandura Bl</i>	hasma
on HgCl ₂ -Induced Anemia in Rats P. K. SARKAR, P. K. PRAJAPATI, A. K. CHOUDHARY,	
V. J. SHUKLA AND B. RAVISHANKAR	791-795
RPHPLC Method for the Estimation of Glibenclamide in F	luman
Serum	
S. D. RAJENDRAN, B. K. PHILIP, R. GOPINATH AND	706 700
B. SURESH	796-799
2D QSAR of Arylpiperazines as 5-HT _{1A} Receptor Agonists JRMILA J. JOSHI, SONALI H. TIKHELE AND F. H. SHAH	800-804
Antiproliferative and Cancer-chemopreventive Properties Sulfated Glycosylated Extract Derived from Leucaena	of
Ieucocephala Amira M Gamal-Fideen H Amer W A Heimy H M RAGA	B

AMIRA M. GAMAL-ELDEEN, H. AMER, W. A. HELMY, H. M. RAGAB AND ROBA M. TALAAT 805-811

SHORT COMMUNICATIONS

SHORT COMMUNICATIONS	
Simultaneous Derivative and Multi-Component Spectrophotometric Determination of Drotaverine Hydrochloride and Mefenamic Acid in Tablets P. P. DAHIVELKAR, V. K. MAHAJAN, S. B. BARI, A. A. SHIRKHEDKAR, R. A. FURSULE AND S. J. SURANA	812-814
Design and Synthesis of Substituted 2-Naphthyloxyethy as Potential 5-HT _{1A} Antagonists	
URMILA J. JOSHI, R. K. DUBE, F. H. SHAH AND S. R. NAIK	814-816
Diuretic Activity of <i>Lagenaria siceraria</i> Fruit Extracts in F B. V. GHULE, M. H. GHANTE, P. G. YEOLE AND A. N. SAOJI	817-819
Determination of Racecadotril by HPLC in Capsules S. L. PRABU, T. SINGH, A. JOSEPH, C. DINESH KUMAR AND A. SHIRWAIKAR	819-821
Novel Spectrophotometric Estimation of Frusemide Usin Hydrotropic Solubilization Phenomenon R. K. MAHESHWARI, S. DESWAL, D. TIWARI, N. ALI, B. POTHEN AND S. JAIN	0
In Vivo Pharmacokinetic Studies of Prodrugs of Ibuprofe ABHA DOSHI AND S. G. DESHPANDE	en 824-827
Protective Effect of <i>Tamarindus indica</i> Linn Against Paracetamol-Induced Hepatotoxicity in Rats B. P. PIMPLE, P. V. KADAM, N. S. BADGUJAR, A. R. BAFNA AND M. J. PATIL) 827-831
Simultaneous Estimation of Atorvastatin Calcium and Amlodipine Besylate from Tablets P. MISHRA, ALKA GUPTA AND K. SHAH	831-833
Development and Validation of a Simultaneous HPTLC M for the Estimation of Olmesartan medoxomil and Hydrochlorothiazide in Tablet Dosage Form N. J. SHAH, B. N. SUHAGIA, R. R. SHAH AND N. M. PATEL	834-836
Orodispersible Tablets of Meloxicam using Disintegrant for Improved Efficacy P. V. SWAMY, S. H. AREEFULLA, S. B. SHIRSAND, SMITHA CANDRA AND R. DRACHANTH	
SMITHA GANDRA AND B. PRASHANTH Spectrophotometric Method for Ondansetron Hydrochlo	836-840
SRADHANJALI PATRA, A. A. CHOUDHURY, R. K. KAR AND B. B. BARIK	840-841
HPTLC Determination of Artesunate as Bulk Drug and in Pharmaceutical Formulations	
S. P. AGARWAL, A. ALI AND SHIPRA AHUJA	841-844
Simultaneous Spectrophotometric Estimation of Metform Repaglinide in a synthetic mixture	nin and
J. R. PATEL, B. N. SUHAGIA AND B. H. PATEL	844-846
Synthesis and Antiinflammatory Activity of Substituted (2-oxochromen-3-yl) benzamides V. MADDI, S. N. MAMLEDESAI, D. SATYANARAYANA AND	
S. SWAMY	847-849
Evaluation of Hepatoprotective Activity of Ethanol Extra Ptrospermum acerifolium Ster Leaves	
S. KHARPATE, G. VADNERKAR, DEEPTI JAIN AND S. JAIN	850-852
New Antihistaminic Agents: Synthesis and Evaluation of	H1-An-

New Antihistaminic Agents: Synthesis and Evaluation of H1-Antihistaminic actions of 3-[(N,N-Dialkylamino)alkyl)-1,2,3,4-tetrahydro-(1H)-thioquinazolin-4(3H)-ones and Their oxo Analogues M. B. RAJU, S. D. SINGH, A. RAGHU RAM RAO AND K. S. RAJAN 853-856

Orodispersible Tablets of Meloxicam using Disintegrant Blends for Improved Efficacy

P. V. SWAMY*, S. H. AREEFULLA, S. B. SHIRSAND, SMITHA GANDRA AND B. PRASHANTH Department of Pharmaceutics, H. K. E. Society's College of Pharmacy, Sedam Road, Gulbarga - 585 105, India

Swamy, et al.: Orodispersible Meloxicam Tablets using Disintegrant Blends

In the present work, orodispersible tablets of meloxicam were designed with a view to enhance patient compliance. A combination of super-disintegrants i.e., sodium starch glycolate- croscarmellose sodium or sodium starch glycolate- crospovidone were used along with directly compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, drug content uniformity, wetting time, water absorption ratio and *in vitro* dispersion time. Based on *in vitro* dispersion time (approximately 10 s), two formulations (one from each batch) were tested for *in vitro* drug release pattern (in pH 6.8 phosphate buffer), short-term stability (at 45° for 3

*For correspondence

E-mail: vspadavala@rediffmail.com

w) and drug-excipient interaction (IR spectroscopy). Among the two formulations, the formulation prepared by direct compression method using 2% w/w sodium starch glycolate and 1.5% w/w croscarmellose sodium was found to be a better formulation ($t_{50\%}$ = 22 min) based on the *in vitro* drug release characteristics compared to conventional commercial tablet formulation ($t_{50\%}$ = 68 min). Short-term stability studies on the formulations indicated that there are no significant changes in drug content and *in vitro* dispersion time (P<0.05).

Key words: Orodispersible tablets, meloxicam, sodium starch glycolate, crospovidone, croscarmellose sodium

Many patients express difficulty in swallowing tablets and hard gelatin capsules, tending to non-compliance and ineffective therapy¹. Recent advances in novel drug delivery systems (NDDS) aim to enhance safety and efficacy of drug molecules by formulating a convenient dosage form for administration and to achieve better patient compliance. One such approach is orodispersible tablet¹⁻⁴. Advantages of this drug delivery system include administration without water, accuracy of dosage, easy portability, alternative to liquid dosage forms, ideal for pediatric and geriatric patients and rapid onset of action. Meloxicam is an oxicam or enol carboxamide derivative. It is a nonsteroidal antiinflammatory drug (NSAID) with highly selective cyclo-oxygenase-2 (COX-2) inhibitory action. It is used in the treatment of rheumatoid arthritis, osteoarthritis, dental pain, and in the management of acute post-operative pain^{5,6}. It was selected as drug candidate, as it is not available in such dosage form. Aim of the present study was to develop such a NDDS for meloxicam by simple and cost-effective direct compression technique.

Meloxicam and super-disintegrants were gift samples from Sun Pharma, Mumbai and Wockhardt Research Centre, Aurangabad, respectively. Directly compressible mannitol (Pearlitol SD200) was a generous gift from Strides Arcolabs, Bangalore. Microcrystalline cellulose (Loba Chemie Pvt. Ltd., Mumbai), colloidal silicon dioxide (Yucca Enterprises, Mumbai), magnesium stearate (CDH, Mumbai) were used. All other chemicals used were of Analytical Reagent grade.

Orodispersible tablets of meloxicam were prepared by direct compression⁷ according to the formulae given in Table 1. All the ingredients were passed through #60 mesh separately. Then the ingredients were weighed and mixed in geometrical order and tablets were compressed using 8 mm normal concave punches to get tablets of 200 mg weight on a 16-station rotary tablet machine (Cadmach). A batch of 60 tablets was prepared for all the designed formulations.

Twenty tablets were selected at random and weighed individually. The individual weights were compared with the average weight for determination of weight variation⁸. Hardness and friability of the tablets were determined by using Monsanto Hardness Tester and Roche friabilator respectively. For content uniformity test, ten tablets were weighed and powdered. The powder equivalent to 7.5 mg of meloxicam was extracted into methanol and liquid was filtered. The meloxicam content was determined by measuring the absorbance at 363.2 nm after appropriate dilution with methanol. The drug content was calculated using the standard calibration curve. The mean percent drug content was calculated as an average of three determinations⁹. For determination of wetting time and water absorption ratio¹⁰, a piece of tissue paper

Ingredients (mg/tablet)	Formulation code										
	DC	DCC ₁	DCC ₂	DCC ₃		DCC ₅	DCP ₁	DCP ₂	DCP ₃		DCP ₅
Meloxicam	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
Sodium pstarch glycolate	-	2	4	8	12	16	2	4	8	12	16
Cros-carmellose sodium	-	2	3	4	5	6	-	-	-	-	-
Cros-povidone	-	-	-	-	-	-	6	6	8	8	8
Pearlitol SD 200	20	20	20	20	20	20	20	20	20	20	20
Aerosil	2	2	2	2	2	2	2	2	2	2	2
Magnesium stearate	1	1	1	1	1	1	1	1	1	1	1
Sodium saccharin	1	1	1	1	1	1	1	1	1	1	1
Flavour	4	4	4	4	4	4	4	4	4	4	4
Micro- crystalline											
cellulose	164.5	160.5	157.5	152.5	147.5	142.5	156.5	154.5	148.5	144.5	140.5

TABLE 1: COMPOSITION OF DIFFERENT BATCHES OF ORODISPERSIBLE TABLETS OF MELOXICAM

Formulations DCC₂ and DCP₂ were selected as the best and used in further studies

folded twice was placed in a small Petri dish (internal diameter of 5 cm) containing 6 ml of water. A tablet was placed on the paper and the time required for complete wetting was measured. The wetted tablet was then weighed. Water absorption ratio 'R' was determined using the equation, R=100(Wb-Wa)/Wa, where, Wa is the weight of the tablet before water absorption and Wb is the weight of the tablet after water absorption. For determination of *in vitro* dispersion time, one tablet was placed in a beaker containing 10 ml of pH 6.8 phosphate buffer at 37±0.5° and the time required for complete dispersion was determined¹¹. IR spectra of meloxicam and its formulations were obtained by KBr pellet method using Perkin-Elmer FTIR series (model-1615) spectrophotometer in order to rule out drug-carrier interactions.

In vitro dissolution of meloxicam orodispersible tablets was studied in USP XXIII type-II dissolution apparatus (Electrolab, Model-TDT 06N) employing a paddle stirrer at 50 rpm using 900 ml of pH 6.8 phosphate buffer at $37\pm0.5^{\circ}$ as dissolution medium¹². One tablet was used in each test. Aliquots of dissolution medium were withdrawn at specified intervals of time and analyzed for drug content by measuring the absorbance at 363 nm. The volume withdrawn at each time interval was replaced with fresh quantity of dissolution medium. Cumulative percent of meloxicam released was calculated and plotted against time. Short-term stability studies on the promising formulations (DCC, and DCP,) were carried out by storing the tablets at 45±1° over a 3 w period. At intervals of one week, the tablets were visually examined for any physical changes, changes in drug content and in vitro dispersion time.

Orodispersible tablets of meloxicam were prepared by

TABLE 2: EVALUATION OF ORODISPERSIBLE TABLETS

direct compression method employing combination of two super-disintegrants at a time (Table 1). Sodium starch glycolate (SSG), croscarmellose sodium (CCS) and crospovidone (CP) were used as super-disintegrants while microcrystalline cellulose (MCC) and directly compressible mannitol (Pearlitol SD200) were used as diluent and sweetening agent respectively. A total of ten formulations and a control formulation DC₀ (without super-disintegrants) were designed. Preliminary studies with tablets containing only one super-disintegrant, viz., SSG (5% w/w) or CCS (3% w/w) or CP (4% w/w) displayed in vitro dispersion time of 67, 60 and 71 s, respectively. Hence it was decided to use a combination of two super-disintegrants so that orodispersible tablets with in vitro dispersion time of less than 15 s may be developed.

As the material was free flowing (angle of repose values <30° and Carr's index <15), tablets obtained were of uniform weight (due to uniform die fill), with acceptable variation as per IP specifications i.e., below 7.5%. Drug content was found to be in the range of 97-101%, which is within acceptable limits. Hardness of the tablets was found to be 3.3 to 4 kg/ cm². Friability below 1% was an indication of good mechanical resistance of the tablets. Water absorption ratio and wetting time, which are important criteria for understanding the capacity of disintegrants to swell in presence of little amount of water, were found to be in the range of 71 to 78% and 5 to 7 s respectively. Formulations DCC, and DCP, were found to be promising and displayed an *in vitro* dispersion time of approximately 10 s, which facilitates their faster dispersion in the mouth.

Among the tablet formulations employing various combinations of SSG (1-8% w/w) and CCS (1-3%

Test	Average weight*	Hardness*	Friability	Percent drug	Wetting time*	Water absorption	In vitro Dispersion
	(mg)±SD	(kg/cm²) ±SD	(%)	content* ±SD	(s)±SD	ratio*(%) ±SD	time* (s)±SD
DC ₀	197±0.002	4.0±0.246	0.48	101.33±0.577	24±0.486	89.4±0.214	125±0.432
DCČ,	196±0.001	3.5±0.313	0.83	99.03±0.776	5±0.416	77.3±0.654	14±0.645
DCC,	197±0.002	3.5±0.224	0.69	98.66±0.231	5±0.315	76.4±0.586	10±0.326
DCC,	198±0.002	3.4±0.456	0.75	97.66±0.471	7±0.409	76.4±0.209	25±0.212
DCC₄	199±0.002	3.5±0.283	0.73	97.33±0.618	6±0.416	74.3±0.224	38±0.224
DCC	201±0.002	3.3±0.336	0.84	99.36±0.980	5±0.454	71.6±0.287	44±0.326
DCP	200±0.001	3.5±0.244	0.61	102.13±0.659	7±0.456	75.6±0.324	26±0.414
DCP,	199±0.002	3.3±0.215	0.63	99.00±0.374	7±0.533	74.6±0.313	11±0.218
DCP ₃	200±0.002	3.4±0.218	0.56	98.36±0.679	6±0.493	76.1±0.354	18±0.216
DCP ₄	201±0.001	3.5±0.248	0.59	97.96±0.124	5±0.416	77.0±0.246	26±0.242
DCP	201±0.002	3.5±0.212	0.59	98.32±0.840	5±0.224	78.2±0.315	29±0.284

*Average of three determinations

w/w) as super-disintegrants, the formulation DCC₂ containing 2% w/w SSG and 1.5% w/w CCS was found to be promising, and has shown an *in vitro* dispersion time of 10 s, wetting time of 5s and water absorption ratio of 76% when compared to the control formulation (DCo) which shows 125 s, 24 s and 69.4% values, respectively for the above parameters (Table 2). Further increase in the amount of super-disintegrants increases the *in vitro* dispersion time (up to 44 s for formulation DCC₅), which can be attributed to the gelling effect of SSG at higher concentration^{13,14}.

Among the tablet formulations employing various combinations of SSG (1-8% w/w) and CP (3-4% w/w) as super-disintegrants, the formulation DCP2 containing 2% w/w SSG and 3% w/w CP was found to be promising, and has displayed an *in vitro* dispersion time of 11 s, wetting time of 7 s and water absorption ratio of 75% when compared to the control formulation (DCo), which shows 125 s, 24 s and 69.4% values, respectively, for the above

TABLE 3: IN VITRO DISSOLUTION PARAMETERS IN pH6.8 PHOSPHATE BUFFER

Formulation code	D ₁₀ (%)	DE ₃₀ min (%)	t _{50%} (min)	t _{70%} (min)
MX	5.46	5.23	>120	>120
DC ₀	2.9	2.63	>120	>120
DCČ,	34.17	36.9	22	53
DCP ²	23.06	21.1	69	> 120
CF	18.53	20.9	68	> 120

MX = Pure meloxicam, CF = Conventional commercial formulation, D_{10}^{-} = Percent drug released in 10 min, $DE_{30\,min}^{-}$ = Dissolution efficiency in 30 min, $t_{50\%}^{-}$ = Time for 50% drug dissolution, $t_{70\%}^{-}$ = Time for 70% drug dissolution

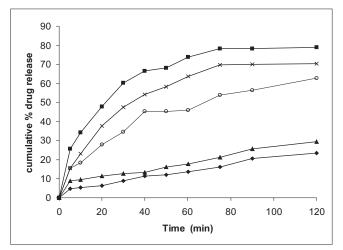


Fig. 1: *In vitro* cumulative percent drug release vs time profiles of promising meloxicam formulations

Plot showing cumulative percent drug release in pH 6.8 phosphate buffer from meloxicam (pure drug) ($-\Phi$ -); control tablet DC₀ ($-\Delta$ -); orodispersible tablet DCC₂ ($-\Phi$ -); orodispersible tablet DCP₂ (-x-); conventional commercial tablet formulation CF (-O-) parameters (Table 2). Further increase in the amount of super-disintegrants increases the *in vitro* dispersion time (up to 29 s for formulation DCP5) due to the same reasoning as stated above.

In vitro dissolution studies on the promising formulations (DCC₂ and DCP₂), the control (DCo) and commercial formulation (CF) along with the pure drug (meloxicam) were carried out in pH 6.8 phosphate buffer, and the various dissolution parameter values viz., percent drug dissolved in 10 min (D₁₀), dissolution efficiency at 30 min (DE_{30 min})¹⁵, t_{50%} and t_{70%} are shown in Table 3, and the dissolution profiles depicted in fig. 1. This data reveals that overall, the formulation DCC₂ has shown three–fold faster drug release (t_{50%}=22 min) when compared to the marketed conventional tablet formulation of meloxicam (t_{50%}=68 min) and released 12 times more drug than the control formulation in 10 min.

IR spectroscopy indicated that the drug is compatible with all the excipients. The IR spectrum of DCC_2 showed all the characteristic peaks of meloxicam pure drug, thus confirming that no interaction of drug occurred with the components of the formulation. Short-term stability studies of the above formulation indicated that there were no significant changes in drug content and *in vitro* dispersion time at the end of a 3 w period (P<0.05).

REFERENCES

- Seager H. Drug delivery products and the Zydis fast dissolving dosage forms. J Pharm Pharmacol 1998;50:375-82.
- 2. Chang RK, Guo X, Burnside BA, Couch RA. Fast dissolving tablets. Pharm Tech 2000;24:52-8.
- Dobetti L. Fast melting tablets: Developments and technologies. Pharm Tech 2001;(Suppl):44-50.
- 4. Kuchekar BS, Arumugam V. Fast dissolving tablets. Indian J Pharm Edu 2001;35:150-2.
- 5. Sweetman SC, editor. Martindale: The complete drug reference. 33rd ed., London: Pharmaceutical Press; 2002. p. 52-3.
- 6. British Pharmacopoeia: The Department of Health, London: Social Services and Public Safety; 2001. p. 1064-5.
- Kucherkar BS, Badhan AC, Mahajan HS. Mouth dissolving tablets of salbutamol sulphate: A Novel drug delivery system. Indian Drugs 2004;41:592-8.
- Banker GS, Anderson NR. Tablets. *In*: Lachman L, Lieberman HA, Kanig JL, editors. The theory and practice of industrial pharmacy. 3rd ed. Mumbai: Varghese Publishing House; 1987. p. 293-9.
- 9. Indian Pharmacopoiea: Controller of Publications, Government of India, New Delhi: Ministry of Health and Family Welfare; 1996. p. 735-6.
- Chaudhari PD, Chaudhari SP, Kolhe SR, Dave KV, More DM. Formulation and evaluation of fast dissolving tablets of famotidine. Indian Drugs 2005:42:641-9.
- 11. Bi YX, Sunada H, Yonezawa Y, Danjo K. Evaluation of rapidly disintergranting tablets by direct compression method. Drug Develop

www.ijpsonline.com

Ind Pharm 1999;25:571-81.

- Bhagwati ST, Hiremath SN, Sreenivas SA. Comparative evaluation of disintegrants by formulating cefixime dispersible tablets. Indian J Pharm Edu 2005;39:194-7.
- Wade A, Weller PJ, editors. Handbook of pharmaceutical excipients. 2nd ed. London: The Pharmaceutical Press; 1994. p. 462-3.
- Bolhuis GK, Zuuman K, Te Wienk GH. Improvement of dissolution of poorly soluble drugs by solid dispersion on superdisintegrant part 2: Choice of superdisintegrants and effect of granulation. Eur J Pharm

Sci 1997;5:63-9.

 Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol 1975;27:48-9.

> Accepted 18 December 2007 Revised 5 July 2007 Received 21 August 2006 Indian J. Pharm. Sci., 2007, 69 (6): 836-840