Indian Journal of Pharmaceutical Sciences

Scientific Publication of the Indian Pharmaceutical Association

Indexed in Ind MED, EMBASE/Excerpta Medica, International Pharmaceutical Abstracts, Chemical Abstracts.

Volume 69

Number 6

November-December 2007

CONTENTS

REVIEW ARTICLES

Cholesteryl Ester Transfer Protein: A Potential Target for the	
Treatment of Coronary Artery Disease HARSHA PATEL, JIGNA SHAH, SUNITA PATEL AND	
	5-740
Properties and Formulation of Oral Drug Delivery Systems of Protein and Peptides	F
A. SEMALTY, MONA SEMALTY, R. SINGH, S. K. SARAF AND	
SHUBHINI SARAF 741	1-747
RESEARCH PAPERS	
Fabrication and Evaluation of Asymmetric Membrane Osmoti Pump	ic
	3-752
Studies of Disintegrant Properties of Seed Mucilage of Ocime	um
<i>gratissimum</i> RAVIKUMAR, A. A. SHIRWAIKAR, ANNIE SHIRWAIKAR,	
S. LAKHSHMANA PRABU, R. MAHALAXMI, K. RAJENDRAN AND	
	3-758
Simultaneous Spectroscopic Estimation of Ezetimibe and Simvastatin in Tablet Dosage forms	
•	9-762
Formulation and Optimization of Carbamazepine Floating Tablets	
D. M. PATEL, N. M. PATEL, N. N. PANDYA	
	3-767
Effects of <i>Medicago sativa</i> on Nephropathy in Diabetic Rats M. S. MEHRANJANI, M. A. SHARIATZADEH, A. R. DESFULIAN,	
	3-772
Development of Hospital Formulary for a Tertiary Care Teach	ing
Hospital in South India R. J. D'ALMEIDA, LEELAVATHI D. ACHARYA, PADMA G. M. RAO,	
	3-779
Simultaneous Spectrophotometric Estimation of Rosiglitazone Maleate and Glimepiride in Tablet Dosage	
Forms	
)-783
Preparation, Characterization and Antimicrobial Activity of Acrylate Copolymer Bound Amoxycillin	
	4-790
Haematinic Evaluation of Lauha Bhasma and Mandura Bhasr	па
on HgCl,-Induced Anemia in Rats	
P. K. SARŘAR, P. K. PRAJAPATI, A. K. CHOUDHARY, V. J. SHUKLA AND B. RAVISHANKAR 791	1-795
RPHPLC Method for the Estimation of Glibenclamide in Huma	
Serum	
S. D. RAJENDRAN, B. K. PHILIP, R. GOPINATH AND B. SURESH 796	6-799
2D QSAR of Arylpiperazines as 5-HT ₁₄ Receptor Agonists	199
URMILA J. JOSHI, SONALI H. TIKHELE AND F. H. SHAH 800)-804
Antiproliferative and Cancer-chemopreventive Properties of Sulfated Glycosylated Extract Derived from <i>Leucaena</i>	
Ieucocephaia Amira m gamai-fi deen h amer w a heimy h m ragar	

AMIRA M. GAMAL-ELDEEN, H. AMER, W. A. HELMY, H. M. RAGAB AND ROBA M. TALAAT 805-811

SHORT COMMUNICATIONS

SHORT COMMUNICATIONS	
Simultaneous Derivative and Multi-Component Spectrophotometric Determination of Drotaverine Hydrochloride and Mefenamic Acid in Tablets P. P. DAHIVELKAR, V. K. MAHAJAN, S. B. BARI, A. A. SHIRKHEDKAR, R. A. FURSULE AND S. J. SURANA	812-814
Design and Synthesis of Substituted 2-Naphthyloxyethy as Potential 5-HT _{1A} Antagonists	
URMILA J. JOSHI, R. K. DUBE, F. H. SHAH AND S. R. NAIK	814-816
Diuretic Activity of <i>Lagenaria siceraria</i> Fruit Extracts in F B. V. GHULE, M. H. GHANTE, P. G. YEOLE AND A. N. SAOJI	817-819
Determination of Racecadotril by HPLC in Capsules S. L. PRABU, T. SINGH, A. JOSEPH, C. DINESH KUMAR AND A. SHIRWAIKAR	819-821
Novel Spectrophotometric Estimation of Frusemide Usin Hydrotropic Solubilization Phenomenon R. K. MAHESHWARI, S. DESWAL, D. TIWARI, N. ALI, B. POTHEN AND S. JAIN	0
In Vivo Pharmacokinetic Studies of Prodrugs of Ibuprofe ABHA DOSHI AND S. G. DESHPANDE	en 824-827
Protective Effect of <i>Tamarindus indica</i> Linn Against Paracetamol-Induced Hepatotoxicity in Rats B. P. PIMPLE, P. V. KADAM, N. S. BADGUJAR, A. R. BAFNA AND M. J. PATIL) 827-831
Simultaneous Estimation of Atorvastatin Calcium and Amlodipine Besylate from Tablets P. MISHRA, ALKA GUPTA AND K. SHAH	831-833
Development and Validation of a Simultaneous HPTLC M for the Estimation of Olmesartan medoxomil and Hydrochlorothiazide in Tablet Dosage Form N. J. SHAH, B. N. SUHAGIA, R. R. SHAH AND N. M. PATEL	834-836
Orodispersible Tablets of Meloxicam using Disintegrant for Improved Efficacy P. V. SWAMY, S. H. AREEFULLA, S. B. SHIRSAND, SMITHA CANDRA AND R. DRACHANTH	
SMITHA GANDRA AND B. PRASHANTH Spectrophotometric Method for Ondansetron Hydrochlo	836-840
SRADHANJALI PATRA, A. A. CHOUDHURY, R. K. KAR AND B. B. BARIK	840-841
HPTLC Determination of Artesunate as Bulk Drug and in Pharmaceutical Formulations	
S. P. AGARWAL, A. ALI AND SHIPRA AHUJA	841-844
Simultaneous Spectrophotometric Estimation of Metform Repaglinide in a synthetic mixture	nin and
J. R. PATEL, B. N. SUHAGIA AND B. H. PATEL	844-846
Synthesis and Antiinflammatory Activity of Substituted (2-oxochromen-3-yl) benzamides V. MADDI, S. N. MAMLEDESAI, D. SATYANARAYANA AND	
S. SWAMY	847-849
Evaluation of Hepatoprotective Activity of Ethanol Extra Ptrospermum acerifolium Ster Leaves	
S. KHARPATE, G. VADNERKAR, DEEPTI JAIN AND S. JAIN	850-852
New Antihistaminic Agents: Synthesis and Evaluation of	H1-An-

New Antihistaminic Agents: Synthesis and Evaluation of H1-Antihistaminic actions of 3-[(N,N-Dialkylamino)alkyl)-1,2,3,4-tetrahydro-(1H)-thioquinazolin-4(3H)-ones and Their oxo Analogues M. B. RAJU, S. D. SINGH, A. RAGHU RAM RAO AND K. S. RAJAN 853-856

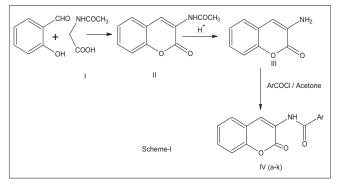
Synthesis and Antiinflammatory Activity of Substituted (2-oxochromen-3-yl)benzamides

V. MADDI*, S. N. MAMLEDESAI, D. SATYANARAYANA¹ AND S. SWAMY²

Department of Pharmaceutical Chemistry, K. L. E. S's College of Pharmacy, Vidyanagar, Hubli - 580 031, India, ¹Department of Pharmaceutical Chemistry, N. G. S. M. Institute of Pharmaceutical Sciences, Nanthoor, Mangalore - 576 005, India, ²Department of Pharmacology, Sree Siddaganga College of Pharmacy, Tumakur - 572 102, India

Maddi, et al.: Synthesis of Antiinflammatory Substituted (2-oxochromen-3-yl)benzamides

The title compounds were synthesized by condensing 3-aminocoumarin with substituted aromatic acid chlorides. The acid chlorides were prepared from different substituted aromatic carboxylic acids and thionyl chloride. The structures of the compounds were confirmed by IR, NMR spectral data and elemental analysis. The title compounds were found to possess significant anti-inflammatory and analgesic activities.


Key words: Coumarin, coumarin amides, antiinflammatory

Coumarin derivatives are known to be an interesting class of natural or synthetic compounds¹, whose biological activity varies according to the substituents on the benzopyran ring^{2,3}. Though the structure-activity relationship of these compounds is not investigated, their antibacterial⁴⁻⁶, antifungal⁷, antitumor^{8,9}, antiHIV^{10,11} and antiinflammatory and analgesic¹² activities have been published recently.

In continuation of our investigations on biologically potent coumarin compounds¹², we now report the synthesis of a series of substituted (2-oxochromen-3-vl)benzamides (IVa-k)and their antiinflammatory activity. The reaction sequence leading to the formation of different title compounds is outlined in Scheme-1. The key starting compound, 3-aminocoumarin was synthesized by the condensation of salicylaldehyde with acetyl glycine in presence of acetic anhydride and catalytic amount of piperidine followed by acid hydrolysis (III). This on condensation with substituted aroyl chlorides afforded the title compounds (IVa-k) in 38 -70% yields. The purity of the products was checked by TLC and the structures were confirmed by elemental analysis and spectroscopic data. All the compounds (IVa-k) were screened for anti-inflammatory and analgesic activities. Albino rats of either sex weighing between 150-200 g, and mice of either sex weighing between 20-25 g, procured from K. S. Hegade Medical Academy,

*For correspondence E-mail: veeresh_m@rediffmail.com Deralakatte, Mangalore, were selected for studies. The study was carried in accordance with the rules and regulations laid down by the Institutional Animal Ethical Committee.

Melting points were determined by open capillary method on Sheetal electronic instrument and are uncorrected. The purity of the products was checked by TLC using precoated silica G plates and visualized in iodine. The IR spectra were recorded on Jasco FTIR-460 in potassium bromide discs. The ¹H NMR was recorded on a JeolGSX- 400 FTNMR MHz spectrophotometer in CDCl₃ and using tetramethylsilane as internal standard. Diclofenac sodium was obtained as a gift sample from Fourrts (India) Laboratories. Pvt. Ltd., Chennai. All other chemicals were of synthetic grade.

Scheme 1: Scheme showing the synthesis of substituted-*N*-(2-oxo-*2H*-chromen-3-yl)benzamides

Substitutions for Ar is IVa -C6H5, IVb -2-C₆H₄Cl, IVc -4-C₆H₄Cl, IVd -4-C₆H₄NO_{2'}, IVe -CH=CH-C₆H₅, IVf -4-C₆H₄CH_{3'}, IVg -2C₆H₄CH_{3'}, IVf -2C₆H₄NHCOCH₃, IVi -4-C₅H₅N, IVj -3-C₅H₅N and IVk -4-C₆H₄NHCOCH₃

Acetylglycine¹³(I) was synthesiszed by adding acetic anhydride (14.5 g, 0.14 mol) to a solution of glycine (5.0 g, 0.06 mol) in water (75 ml). The reaction mixture was stirred for 20 min at room temperature, and cooled in a refrigerator overnight. Acetylglycine which separated as crystals was filtered, washed with cold water and dried at 100 ° mp 206-207 °.

3-Acetylaminocoumarin¹⁴(II) was prepared by heating a mixture of acetylglycine (5.0 g, 0.043 mol), salicylaldehyde (12.2 g, 0.1 mol) and a drop of piperidine in acetic anhydride (5 ml, 0.049 mol) at 130-40° for 6 h. The reaction mixture was cooled, diluted with 10 ml of water, and further refluxed for 30 min. The gummy mass thus obtained after removal of water under reduced pressure was repeatedly washed with ether to remove adhering traces of piperidine and acetylglycine. The crude product when crystallized from ethanol furnished the product as a crystalline solid, mp 200-203 °, IR (KBr) 3351 (NH stretching) 1715 (α -pyrone carbonyl group), 1653 cm⁻¹(amide carbonyl) 1H NMR (CDCl₃): δ 2.2 (s, 3H, CH₃) 7.2-7.5 (m, 4H, Ar-H), 8.1 (s, 1H, CONH).

3-Aminocoumarin¹⁴(III) was prepared by treating a solution of 3-acetylaminocoumarin (5 g, 0.024 mol) in hot ethanol (25 ml) with concentrated hydrochloric acid (5 ml.) and the resulting mixture was refluxed for 2 h. The reaction mixture was cooled diluted with water, neutralized with aqueous saturated sodium bicarbonate and kept overnight. The solid thus separated was filtered and the filtrate when cooled yielded some more product. Further purification by crystallization from ethanol gave the product as a creamish crystalline solid, (3.5 g, 70%), mp 127⁰.: IR (KBr) 3351 (NH stretching) 1715 cm⁻¹ (α -pyrone carbonyl): ¹H NMR (CDCl₃): δ 4.6 (s, 2H, NH2) 7.2-7.5 (m, 4H, Ar-H).

Substituted benzoyl chlorides¹⁵ were prepared by refluxing a mixture of substituted aromatic carboxylic acids (0.03 mol) and thionyl chloride (6.25 g, 0.05 mol) in dry benzene (20 ml) for about 1 h. Excess of thionyl chloride was removed by repeated evaporation with dry benzene in vacuum. The crude acyl chloride dissolved in dry acetone (50 ml) was used for the preparation of substituted-N-(2-oxo-2H-chromen-3-yl)benzamides immediately.

Synthesis of 4-methyl-*N*-(2-oxo-2*H*-chromen-3-yl)benzamide(IVf) was accomplished by adding a

solution of 4-methylbenzoyl chloride (9.27 g, 0.06 mol) in dry acetone (50 ml) to a solution of 3aminocoumarin (5.0g, 0.03mol) in dry pyridine (50 ml) drop wise while stirring at room temperature. After the addition was complete, stirring was continued for another 30 min. The reaction mixture was then poured into cold water (200 ml) and the crude amide was collected after washing with saturated solution of sodium bicarbonate to remove p-toluic acid. It was further purified by crystallization from ethanol. The purity of 4-methyl-N-(2-oxo-2H-chromen-3-yl)benzamide was assessed by thin layer chromatography by using ethyl acetate and benzene.(1:3), IR (KBr):3334 (NH stretching), 1724 (α -pyrone carbonyl), 1675 cm⁻¹ (amide carbonyl). ¹H NMR (CDCl₂): δ 2.5 (s, 3H, CH3), 7.2-8.6 (m, 9H, Ar-H) 8.9 (s, 1H, CONH). All other compounds (IVak) were synthesized similarly. Spectroscopic data and elemental analysis are in accordance with the expected structures (Table 1)

All the new compounds were screened for antiinflammatory activity by carrageenan-induced rat hind paw edema method following the technique described by Winter *et al*¹⁶. Compounds were administered orally at a dose of 250 mg/kg and standard diclofenac sodium at a dose of 10 mg/kg. The analgesic activity of the compounds was determined by acetic acid-induced writhing method¹⁷. Test compounds were given at dose of 250 mg/kg and standard aspirin at 30 mg/kg orally.

Condensation of 3-aminocoumarin with substituted aroyl chlorides gave the title compounds IVa-k in good yield (Table 1). The compounds were characterized by IR, ¹H NMR spectral data and elemental analysis. Table 2 summarizes the antiinflammatory activity of various substituted-N-(2-oxo-2H-chromen-3-

TABLE 1: PHYSICAL DATA OF SUBSTITUTED-N-(2-OXO-
2H-CHROMEN-3-YL) BENZAMIDES

Compound	% Yield	Melting point	Rf Value ^a
IV a	70	98	0.45
IV b	65	105	0.68
IV c	55	115	0.79
IV d	58	133	0.88
IV e	48	123	0.49
IV f	62	145	0.32
IV g	65	95	0.55
IV h	58	138-140	0.71
IV i	75	108-109	0.59
IV j	38	130-131	0.61
IV k	43	132-134	0.29

a - ethyl acetate and benzene in 1:3

TABLE 2: ACUTE ANTIINFLAMMATORY ACTIVITY OF SUBSTITUTED-N-(2-OXO-2H-CHROMEN-3-YL)BENZAMIDES IN CARRAGEENAN-INDUCED PAW EDEMA MODEL

Compound	% Inhibition after		% Inhibi	% Inhibition after	
	3 h	(±SEM)	6 h	(±SEM)	
IV a	17.8	(±2.46)	30.6	(±0.49)	
IV b	55.4	(±1.50)	59.7	(±6.90)	
IV c	57.6	(±2.77)	48.8	(±5.60)	
IV d	07.5	(±3.56)	22.4	(±0.66)	
IV e	37.5*	(±1.84)	27.8	(±0.68)	
IV f	07.7	(±4.22)	20.4	(±0.56)	
IV g	03.5	(±2.78)	05.6	(±0.36)	
IV h	31.9	(±3.98)	22.7	(±0.65)	
IV i	06.5	(±4.93)	22.4	(±0.76)	
IV j	07.5	(±2.96)	18.5	(±0.68)	
IV k	35.1	(±2.42)	25.3	(±0.71)	
Diclofenac sodium	65.7	(±1.68)	65.5	(±0.82)	
3-aminocoumarin	16.6	(±2.60)	00.0	(±1.50)	

(n=6) *Not significant. All other compounds showed P<0.001 by student't' test. Animals were dosed 250 mg/kg

TABLE 3: ANALGESIC ACTIVITY BY ACETIC ACID-INDUCED WRITHING METHOD

Compound	No. of wriths in 15 min	±SEM	% Analgesic activity
Control	68.6		
IV b	24.3	3.7	52.0
IV c	30.8	9.4	55.0
Aspirin	29.0	5.6	58.0

(n=6), P<0.001 by student 't' test, Animals were dosed 250 mg/ kg.

yl)benzamides at a dose of 250 mg/kg by carrageenan induced paw edema method.

Among all the compounds screened IVb and IVc which carry a chlorine substituent in phenyl ring of benzamide showed very good activity which is nearly equal to that of standard diclofenac sodium. All the other compounds showed moderate activity. The replacement of benzamide group by heterocyclic amide (pyridine) also did not result in compounds of encouraging activity. However, the presence of chlorine atom appears to enhance the antiinflammatory activity.

Table 3 summarizes the analgesic activity of compounds. On the basis of above results only the chlorosubstituted compounds (IVb and IVc) have been subjected to screening for analgesic activity both the compounds exhibited analgesic activity nearly equal to that of standard drug aspirin.

ACKNOWLEDGMENTS

We thank Director, NMR institute, Indian Institute of Science, Bangalore, Regional Instrumentation Centre, CDRI, Lucknow and Prof. B. G. Desai, Principal, K. L. E. S' College of Pharmacy, Rajajinagar, Bangalore, for providing the spectral and analytical data. We also thank Dr. M. N. A. Rao, General Manager R and D, Devi's Laboratory, Hyderabad, Dr. V. I. Hukkeri and Dr. Y. S. Agasimundin for encouragement.

REFERENCES

- 1. Takeuchi M, Kamasama T, Aida Y, Oki J, Maruyama I, Wantabe K, *et al.* Pharmacological activities of the prenylcoumarins, developed from folk usage as a medicine of Peucedanum japonicum THUNB. Chem Pharm Bull 1991;39:1415-21.
- Singh V, Srivastava VK, Palit G, Shanker K. Coumarin congeners as antidepressants. Arzneim-Forsch 1992:42:993-6.
- Huang L, Kashiwada Y, Cosentino LM, Fan S, Chen C, MePhail AT, *et al.* Synthesis and anti HIV activity of Dihydrpseseline and related analogs. J Med Chem 1994;37:3947-55.
- Hishmat OH, Miky JA, Farrag AA, Fadl-Allah EM. LC determination of coumarin-3-Acyl derivatives for evaluation of the stability and monoamine oxidase inhibition mechanism. Arch Pharm Res 1989;12:181-9.
- Nagesam M, Raju KM, Raju MS. Synthesis and antibacterial activity of 7-ethoxy-4-(substituted)-aminomethylcoumarins. Indian J Pharm Sci 1988;50:49-52.
- Nagesam M, Raju KM, Raju MS. Synthesis and antibacterial activity of 4,6-dimethyl-3-substituted aminomethylcoumarins. J Indian Chem Soc 1988;65:380-2.
- Singh R, Gupta BB, Malik OP, Kataria HR. Studies on pesticides based on coumarin.I. Antifungal activity of 6-alkyl-3-n-butyl-7-hydroxy-4methyl coumarin. Pesticide Sci 1987;20:125.
- Baraldi PG, Manfredini S, Simoni D, Tabrizi MA, Balzarini J, DeClereq E. Synthesis and cytostatic activity of 3(2H)-furanone and 4,5-dihydro-3(2H)-furanone congeners of Geiparvarin, containing a Geraniol-like fragment in the side chain. J Med Chem 1992;35:1877-82.
- Perrella FW, Chen SF, Behrens DL, Kaltenbach RF, Seitz SP. Phospholipase C inhibitors: A new class of cytotoxic agents. J Med Chem 1994;37:2232-7.
- Kashman Y, Gustafson KR, Fuller RW, Cardellina JH, McMohan JB, Currens MJ, *et al.* The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rain forest tree Calophyllum lanigerum. J Med Chem 1992;35:2735-43.
- Patil AD, Freyer AJ, Eggleston DS, Waltiwanger RC, Bean MF, Taylor PB, *et al.* The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J Med Chem 1993;36:4131-8.
- Maddi V, Raghu KS, Rao MN. Synthesis and anti-inflammatory activity of 3-(Benzylideneamino) coumarins in rodents. J Pharm Sci 1992;81:964-6.
- Vogel AI. In: Text Book of Practical Organic Chemistry, 3rd ed. London: ELBS: 1975. p. 909.
- 14. Linch FW. J Chem Soc 1912;101:1755.
- Martin D, Miroslav M, Jiri K, Katarina K., Substituted amides of pyrazine-2-carboxylic acids: Synthesis and biological activity. Molecules 2002;7:363-73.
- Winter CA, Risley EA, Nuss GW. Carrageenan induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 1962;111:544-7.
- 17. Koster RM, Anderson EJ, De Beer. Acetic acid for analgesic screening. Fed Proc 1959;18:412-3.

Accepted 24 December 2007 Revised 17 July 2007 Received 17 May 2006 Indian J. Pharm. Sci., 2007, 69 (6): 847-849