Indian Journal of Pharmaceutical Sciences
Users online: 18
Scientific Publication of the Indian Pharmaceutical Association
Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
The Journal Search Current Issue Archives Instructions Online submission Login  


 
  Table of Contents 
SHORT COMMUNICATION
Year : 2011  |  Volume : 73  |  Issue : 3  |  Page : 333-337
New 6-bromo-2-methyl-3-(Substituted Phenyl)-(3H)-quinazolin-4-Ones with Antimicrobial and Antiinflammatory activities


Department of Pharmaceutical Chemistry, Rajiv Academy for Pharmacy, Mathura-281 001, India

Date of Submission02-Apr-2010
Date of Decision20-Jun-2011
Date of Acceptance24-Jun-2011
Date of Web Publication3-Mar-2012

Correspondence Address:
Y Murti
Department of Pharmaceutical Chemistry, Rajiv Academy for Pharmacy, Mathura-281 001
India
Login to access the Email id


DOI: 10.4103/0250-474X.93512

PMID: 22457563

Get Permissions

   Abstract 

New quinazolin-4-one derivatives, 6-bromo-2-methyl-3-(substituted phenyl)-(3H)-quinazolin-4-one, were synthesized and evaluated for antimicrobial and antiinflammatory activities. The structures attributed to synthesized compounds 1-8 were supported by the results of elemental analysis as well as by the UV, IR and 1 H NMR spectral data. Investigation of antimicrobial activity was performed using cup-plate agar diffusion method against Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa and Candida albicans, Aspergillus niger and Curvularia lunata. Antiinflammatory activity was evaluated using the carrageenan-induced paw oedema test in rats. The results showed that compounds 2b, 2c, 2d, 2g and 2h exhibited significant antibacterial and antifungal activity comparable to standard drugs and compounds 2b and 2c showed good antiinflammatory activity comparable to ibuprofen.


Keywords: Antibacterial, antifungal, antiinflammatory, quinazolin-4-one, 5-bromoanthranilic acid


How to cite this article:
Murti Y, Singh A K, Pathak D. New 6-bromo-2-methyl-3-(Substituted Phenyl)-(3H)-quinazolin-4-Ones with Antimicrobial and Antiinflammatory activities. Indian J Pharm Sci 2011;73:333-7

How to cite this URL:
Murti Y, Singh A K, Pathak D. New 6-bromo-2-methyl-3-(Substituted Phenyl)-(3H)-quinazolin-4-Ones with Antimicrobial and Antiinflammatory activities. Indian J Pharm Sci [serial online] 2011 [cited 2014 Aug 22];73:333-7. Available from: http://www.ijpsonline.com/text.asp?2011/73/3/333/93512


Quinazolin-4-one derivatives exhibited a great therapeutic potential in medicinal chemistry. They have drawn much attention due to their broad range of pharmacological properties, which include vitronectin receptor (αVβ3 ) antagonist [1] , nonpeptide CCK-B antagonist [2] , DNA repair enzyme poly (ADP-ribose) polymerase (PARP) inhibitor [3] , antibacterial [4] , antifungal [4] , antiHIV [4] , analgesic [5] , antiinflammatory [5],[6],[7] , anticancer [8] , antidiuretic [9] , sedative-hypnotic [7] and anticonvulsant activities [7],[10],[11] . Keeping in view the diverse therapeutic activities of quinazolin-4-ones and as part of our ongoing development of efficient protocols for preparation of bioactive heterocycles, the present study describes a simple and novel synthesis of the title compounds in the hope of getting potent biodynamic agents and evaluates their potential for antimicrobial and antiinflammatory activities. 6-Bromo-2-methyl-3,1-benzoxazinone (1) were prepared by the condensation of 5-bromoanthranilic acid with acetic anhydride. This compound (1) was treated with different substituted anilines under the reflux condition gives compounds 6-bromo-2-methyl-3-(substituted phenyl)-(3H)-quinazolin-4-ones (2a-h). The synthetic scheme leading to the formation of targeted compounds is depicted in Scheme 1.



The melting points were determined in open capillary tubes on melting point apparatus and were uncorrected. The absorbance maxima (λmax ) were determined on a UV/Vis Spectrophotometer Pharma Spec-1700 (Shimadzu) in chloroform. The FTIR were recorded in KBr on Perkin Elmer Spectrum RXI FTIR system, 1 H NMR spectra on Bruker Japan (DRX-300) spectrometer using DMSO-d 6 as solvent and tetramethylsilane (TMS) as internal standard. All chemical shifts (d) are in ppm. All the chemicals used were of LR and AR grade and were procured from S. D. Fine Chem. Ltd., Mumbai and E. Merck, Delhi. The purity of the compounds was checked by TLC (Merck Silica-60F 254 ) with chloroform:methanol:petroleum ether (8:1:1) using iodine vapours UV light as detecting agents and R f value is given in [Table 1]. Elemental analysis (C, H, and N) of the compounds were performed on Heracus 1108 analyzer. All the animals were maintained under standard conditions and had access to pelleted animal feed and water. The study protocols were approved by the institutional animals ethics committee (IAEC/05/08/R1).
Table 1: Physical Characterization Data of Synthesized Compounds (2a-H)

Click here to view


5-Bromoanthranilic acid (1.08 g, 0.005 mol) in 0.01 mol of acetic anhydride was refluxed under anhydrous condition for 5 h. The excess of acetic anhydride was then distilled off under reduced pressure and cooled to room temperature. The corresponding 6-bromo-2-methylbenzoxazin-4-one (1) so obtained was filtered and dried under vacuum; the solid thus obtained was recrystallized from absolute ethanol.

Equimolar quantities of 6-bromo-2-methylbenzoxazin-4-one (1) (0.01 mol) and substituted anilines (0.01 mol) in glacial acetic acid were refluxed for 5-6 h. The progress of the reaction was monitored using TLC (Merck Silica-60F 254 ). The reaction mixture was cooled and poured on to crushed ice with continuous stirring. The resulting solid was washed with distilled water, filtered, dried in vacuum and recrystallized from absolute ethanol and analyzed. Adopting the above procedure nine different 6-bromo-2-methyl-3-(substituted phenyl)-(3H)-quinazolin-4-ones (2a-h) were synthesized and their physical and analytical data are presented in [Table 1]. Spectral analysis of the synthesized compounds were determined and summarized below.

Compound 2a; UV (CHCl 3, λmax , nm): 312.0; FTIR (KBr, cm -1 ): 3010 (aromatic C-H), 2952 (methyl C-H), 1710 (C=O), 1615 (C=N), 1595 (ring C=C), 1212 (C-N), 560 (C-Br); 1 H NMR (DMSO-d 6 , d ppm): 2.13 ppm (s, 3H, -CH 3 ), 6.58-8.60 (m, 8H, aromatic). Compound 2b; UV (CHCl 3 , λmax , nm): 269.5; FTIR (KBr, cm -1 ): 3023 (aromatic C-H), 2956 (methyl C-H), 1720 (C=O), 1620 (C=N), 1584 (ring C=C), 1218 (C-N), 687 (C-Br); 1 H NMR (DMSO-d 6 , d ppm): 2.20 ppm (s, 3H, -CH 3 ), 3.37 (s, 3H, methyl group of -OCH 3 ), 6.60-8.50 (m, 7H, aromatic). Compound 2c; UV (CHCl 3 , λmax , nm): 275.0; FTIR (KBr, cm -1 ): 3030 (aromatic C-H), 2945 (methyl C-H), 1698 (C=O), 1590 (C=N), 1561 (ring C=C), 1210 (C-N), 679 (C-Br); 1 H NMR (DMSO-d 6 , d ppm): 2.60 ppm (s, 3H, -CH 3 ), 3.45 (s, 3H, methyl group of -OCH 3 ), 6.32-7.77 (m, 7H, aromatic).

Compound 2d; UV (CHCl 3 , λmax , nm): 331.0; FTIR (KBr, cm -1 ): 3035 (aromatic C-H), 2951 (methyl C-H), 1700 (C=O), 1625 (C=N), 1595 (ring C=C), 1209 (C-N), 690 (C-Br); 1 H NMR (DMSO-d 6 , d ppm): 3.10 ppm (s, 3H, -CH 3 ), 6.72-8.57 (m, 6H, aromatic). Compound 2e; UV (CHCl 3, λmax , nm): 293.5; FTIR (KBr, cm -1 ): 3032 (aromatic C-H), 2950 (methyl C-H), 1726 (C=O), 1610 (C=N), 1590 (ring C=C), 1206 (C-N), 545 (C-Br); 1 H NMR (DMSO-d 6 , d ppm): 2.45 (s, 3H, -CH 3 ), 7.35-8.40 (m, 7H, aromatic). Compound 2f; UV (CHCl 3, λmax , nm): 292.0; FTIR (KBr, cm -1 ): 3020 (aromatic C-H), 2945 (methyl C-H), 1720 (C=O), 1600 (C=N), 1588 (ring C=C), 1200 (C-N), 650 (C-Br); 1 H NMR (DMSO-d 6 , d ppm): 2.25 (s, 3H, -CH 3 ), 6.12-7.24, (m, 7H, aromatic). Compound 2g; UV (CHCl 3, λmax , nm): 310.5; FTIR (KBr, cm -1 ): 3015 (aromatic C-H), 2955 (methyl C-H), 1705 (C=O), 1616 (C=N), 1596 (ring C=C), 1218 (C-N), 667 (C-Br); 1 H NMR (DMSO-d 6 , d ppm): 2.23 (s, 3H, -CH 3 ), 7.28-8.40 (m, 7H, aromatic). Compound 2h; UV (CHCl 3, λmax , nm): 309.0; FTIR (KBr, cm -1 ): 3028 (aromatic C-H), 2965 (methyl C-H), 1718 (C=O), 1620 (C=N stretch), 1580 (ring C=C stretch), 1210 (C-N), 610 (C-Br); 1 H NMR (DMSO-d 6 , d ppm): 2.35 (s, 3H, -CH 3 ), 6.10-7.40 (m, 7H, aromatic).

All the newly synthesized quinazolin-4-one derivatives (2a-h) were screened for antimicrobial activity by cup-plate agar diffusion method [12] using nutrient agar media against Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa at 25, 50 and 100 μg/ml concentrations, respectively. All the synthesized compounds were dissolved separately to prepare a stock solution of 1.0 mg/ml using DMF. About 20 ml of the growth medium was transferred into petri plates and inoculated with 1.5 ml of microbial culture. Filter paper (Whatmann No. 1) sterile disks of 5.0 mm diameter. Each petri plate was divided into 5 equal portions along the diameter to place one disc. Three discs of test sample were placed on three portions together with one disc with reference drug ciprofloxacin (50 μg/ml) and a disc impregnated with the solvent (DMF) as negative control. Test samples were measured and the average diameters of zones of inhibition (mm) were measured and the average diameters for the test samples were calculated in triplicate sets. The diameters obtained for the test sample were compared with that produced by the standard drug ciprofloxacin by measuring zone of inhibition in mm, by using ciprofloxacin (50 μg/ml) as the standard. Similarly, the antifungal screening of the title compounds (2a-h) was carried out against Candida albicans, Aspergillus niger and Curvularia lunata by using fluconazole (50 μg/ml) as the standard drug for antifungal activity.

The results of antimicrobial activity [Table 2] revealed that all the test compounds showed moderate activity against tested microorganisms. Compounds 2b and 2c exhibited significant antibacterial activity and compounds 2d, 2g and 2h showed good antifungal activity against fungal strains comparable to standard drugs.
Table 2: Antimicrobial Activity Of 6-Bromo-2-Methyl-3-(Substituted Phenyl)-(3h)-Quinazolin-4-Ones (2a-H)

Click here to view


All the newly synthesized quinazolin-4-one derivatives (2a-h) were also screened for antiinflammatory activity by using the carrageenan-induced paw oedema method [13] on Wistar rats of either sex weighing 200-300 mg. The rats were randomly divided in to three groups; each consisted of a minimum of 6 animals. The suspension of the newly synthesized compounds, uniformly dispersed in 2% Tween-80 were administered to test animals orally. The control groups received the same experimental handling as test groups in place of test compounds equivalent doses of vehicle alone were administered. Food and water were withdrawn during the test. Ibuprofen was used as the standard anti-inflammatory drug.

Acute oedema in the hind paws of rat was induced by the planter injection of freshly prepared, w/v carrageenan in distilled water (0.1 ml of freshly prepared, w/v carrageenan in distilled water). The foot volume was measured before and 3 h after carrageenan injection by the micropipette method described by Buttle et al. The mean increase in the paw volume in each group was calculated according to the following formula: Percent antiinflammatory activity= [1- V t /V c ]×100, where V t and V c are the oedema volumes in the drug treated and the control groups.

The results of antiinflammatory data [Table 3] indicate that compounds 2b and 2c were found to possess the most potent antiinflammatory activity (39.45 and 40.10, respectively) at 50 mg/kg in comparison with reference drug, ibuprofen, which showed 42.21% of inhibition of oedema at same dose. Furthermore, the test compound 2b, 2c and ibuprofen were subjected to screen at three graded doses of 25, 50 and 100 mg/kg for antiinflammatory activity. These compounds showed good anti-inflammatory activity at all the three doses than the reference drug.
Table 3: Antiinflammatory Activity Of 6-Bromo-2-Methyl-3-(Substituted Phenyl)-(3H)- Quinazolin-4-Ones (2a-H)

Click here to view


The characteristic features of the synthetic route is that 6-bromo-2-methylbenzoxazin-4-one was treated with different anilines to give 6-bromo-2-methyl-3-(substituted phenyl)-(3H)-quinazolin-4-ones. The selection of substituted anilines was based on presence of electron withdrawing and electron releasing groups.

The newly synthesized compounds were evaluated for antimicrobial and antiinflammatory activity. The results of antimicrobial anti antiinflammatory studies are given in [Table 2] and [Table 3] respectively. Among all the compounds of the present series, compounds 2b and 2c exhibited highest degree of inhibition against the tested bacterial strains and compound 2d, 2g and 2h exhibited highest degree of inhibition against the tested fungal strains. The data of antimicrobial activity revealed that introduction of methoxy group (-OCH 3 ) increases antibacterial activity while introduction of halo groups (-Cl and -Br) increases antifungal activity against tested organisms respectively.

Among the compounds tested for antiinflammatory activity, the compound 2a having phenyl group as a substituent showed the least percentage inhibition of oedema i.e. 31.28%, while the compounds 2b and 2c, substituted with o-methoxyphenyl group and p-methoxyphenyl group exhibited the maximum antiinflammatory activity, 39.45% and 40.10%, respectively, comparable to ibuprofen.

From the result it was concluded that most of the synthesized compounds were biologically active. It may be concluded that further study of these compounds can lead to the development of a potent antimicrobial and antiinflammatory agents.


   Acknowledgements Top


The authors are thankful to Central Institute for Research on Goats, Farah, Mathura, for providing microbial strains for antimicrobial screening. The authors are also thankful to the Head, Regional Sophisticated Instrumentation Centre (RSIC), Central Drug Research Institute (CDRI), Lucknow, India for providing elemental and spectral data.

 
   References Top

1.Lawson EC, Kinney WA, Costanzo MJ, Hoekstra WJ, Kauffman JA, Luci DK, et al. Structure-function study of quinazolinone-based vitronectin receptor (α V β 3 ) antagonists: Computer-assisted analysis of ligand-receptor interactions. Lett Drug Desi Disc 2004;1:14-8.  Back to cited text no. 1
    
2.Padia JK, Field M, Hinton J, Meecham K, Pablo J, Pinnock R, et al. Novel nonpeptide CCK-B antagonists: Design and development of quinazolinone derivatives as potent, selective, and orally active CCKB antagonists. J Med Chem 1998;41:1042-9.  Back to cited text no. 2
    
3.Kulcsár G, Kálai T, Õsz E, Sár CP, Jekõ J, Sümegi B, et al. Synthesis and study of new 4-quinazolinone inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP). ARKIVOC 2003;5:121-31.  Back to cited text no. 3
    
4.Alagarsamy V, Murugesan S, Dhanabal K, Murugan M, Clercq E De. AntiHIV, antibacterial and antifungal activities of some novel 2-methyl-3-(substituted methylamino)-(3H)-quinazolin-4-ones. Indian J Pharm Sci 2007;69:304-7.  Back to cited text no. 4
  Medknow Journal  
5.Alagarsamy V, Muthukumar V, Pavalarani N, Vasanthanathan P, Revathi R. Synthesis, Analgesic and Anti-inflammatory Activities of Some Novel 2,3-Disubstituted Quinazolin-4(3H)-ones. Biol Pharm Bull 2003;26:557-61.  Back to cited text no. 5
    
6.Kenichi O, Yoshihisa Y, Toyonari O, Toru I, Yoshio I. Synthesis and anti-inflammatory activity of 4(1H)-quinazolinone derivatives. J Med Chem 1985;28:568-76.  Back to cited text no. 6
    
7.Abdel-Alim M, Abdel-Alim, Abdel-Nasser A, El-Shorbagi, Mahmoud A, El-Gendy, et al. Quinazolinone derivatives of biological interest V. Novel 4(3H)-quinazolinones with sedative-hypnotic, anticonvulsant and anti-inflammatory activities. Collect Czech Chem Commun 1993;58:1963-8.  Back to cited text no. 7
    
8.Xia Y, Yang ZY, Hour MJ, Kuo SC, Xia P, Bastow KF, et al. Antitumor agents. Part 204: Synthesis and biological evaluation of substituted 2-aryl quinazolinones. Bioorg Med Chem Lett 2001;11:1193-6.  Back to cited text no. 8
    
9.Lyle FR. U.S. Patent 5,973,257, 1985. Chem Abstr 1985;65:2870.  Back to cited text no. 9
    
10.Buchanan JG, Sable HZ. In Selective Organic Transformations 2nd ed. New York: Wiley-Interscience; 1972, p. 1-95.  Back to cited text no. 10
    
11.Wolfe JF, Rathman TL, Sleevi MC, Campbell JA, Greenwood TD. Synthesis and anticonvulsant activity of some new 2-substituted 3-aryl-4(3H)-quinazolinones. J Med Chem 1990;33:161-6.  Back to cited text no. 11
    
12.Gillespie SH. Medical Microbiology-Illustrated. 1st ed. New York: Butterworth Heinemann; 1994. p. 1.  Back to cited text no. 12
    
13.Winter CA, Risely EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol 1962;111:544.  Back to cited text no. 13
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
Print this article  Email this article
 
 
  Search
   
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (560 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Acknowledgements
    References
    Article Tables

 Article Access Statistics
    Viewed1222    
    Printed55    
    Emailed2    
    PDF Downloaded115    
    Comments [Add]    

Recommend this journal