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Prostate cancer is the second most common cause of 
cancer mortality in the male population[1]. The current 
treatment for prostate cancer is a combination of 
surgery, chemotherapy and radiation[2]. It is a hormone 
dependent disease and blockade of androgen action is 
the foundation of most popular therapies[3]. Androgens, 
acting through the androgen receptor (AR), are 
required for prostate development and normal prostate 
function[4]. AR expression is observed in primary 
prostate cancer and can be detected throughout 
progression in both hormone-sensitive and hormone 
refractory cancers[5]. It is obvious that either androgen 
ablation and/or application of AR antagonists lead to 
a reduction of tumor volume and an improvement in 
symptoms in most of the prostate cancer patients[3,6-12].

In recent years, a number of androgen receptor 
antagonists have appeared[10,13]. Among them, 
synthesized ionone based chalcones derivatives act 
as potent antiprostate cancer compounds. Some 
compounds showed significant cytotoxicity against 
human prostate cancer cell line androgen-dependent 

LNCaP as well as antiandrogenic activity was also 
evaluated in LNCaP cells, transfected with wild-type 
AR[14]. In addition, the X-ray crystal structures of 
AR have been determined which provide useful 
information about the interaction with the residues 
near the binding site[15].

To date, no report on molecular modeling has been 
established on ionone based chalcones for anti-prostate 
cancer. The most popular QSAR methods, comparative 
molecular field analysis (CoMFA) and comparative 
similarity indices analysis (CoMSIA) studies incorporate 
3D information for the ligands by searching for sites on 
molecules capable of being modified into better specific 
ligands while hologram quantitative structure activity 
relationship (HQSAR)a fingerprints technique offers 
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sub-structural features in datasets of molecules that are 
important to biological activity[16-18]. Furthermore the 
molecular docking analysis can offer vivid interaction 
picture between a ligand and receptor[19-21]. Combined 
3D-QSAR and docking study could offer more 
information to understand the structural features of 
binding site of protein and the detail of protein–ligand 
interactions for purposive directing the design of new 
potential molecules.

MATERIALS AND METHODS

The molecular sketching and modeling calculations 
were performed using Sybyl X 2.0. A set of forty 
three anti-prostate cancer derivatives with reported 
IC50 μM values were taken from previous literature[14]. 
These activity values were converted to corresponding 
pIC50 (ranging from 6.131-4.572) and used as 
dependent variable in QSAR studies for development 
of model. The structures of the compounds and their 
biological data are given in Table 1. In extend to 
examine the predictive power of the QSAR models, 
the dataset divided into the test set of 10 molecules 
(1, 12, 13, 15, 16, 20, 27, 33, 39 and 43) and 
remaining in training set were selected by diversity 
method in such a way that the structural diversity and 
wide range of biological activity in the data set were 
added. The structures of compounds used in training 
and test set shown in Table 1.

The molecular geometry of molecule was minimized 
by Tripos molecular mechanics force field with 
0.01 kcal/molÅ energy, Gasteiger-Huckel partial 
atomic charges were calculated and energy 
minimizations were performed using the Powell 
method 1000 iterations. The accuracy of the 
prediction power based on QSAR model docking 
and reliability depend on contour maps according to 
alignment rule[22,23]. In order to obtain the best possible 
3D-QSAR statistical model all compounds were 
aligned using a 1-phenylpenta-1,4-dien-3-one nucleus, 
of compound 25 using as the template (fig. 1a) for 
the alignment, because it is one of the most active 
compounds in dataset. An automatic alignment was 
carried out on dataset by using database alignment 
module and aligned molecules are shown in fig.1b.

Comparative molecular field analysis:
The standard CoMFA and CoMSIA procedure applied 
on Sybyl X 2.0. In the CoMFA analysis, the steric 

(S) and electrostatic (E) fields were calculated at 
each lattice with a grid size of 2 Å using a sp3 
hybridized carbon atom with +1 charge serving as a 

TABLE 1: STRUCTURAL FEATURES AND INHIBITORY 
ACTIVITY VALUES

1–15
16–22 23–43

Compound 
number

R2 R3 R4 R5 R6 IC50 (µM) pIC50

1* H OCH3 OH H H 9.5 5.022
2 H OH OCH3 H H 9.9 5.004
3 H OCH3 OCH3 H H 9.5 5.022
4 H OC2H5 OC2H5 H H 8.2 5.086
5 H CF3 H H H 2.8 5.553
6 H H CF3 H H 9.1 5.041
7 H CF3 H CF3 H 8.7 5.060
8 F H H H H 10.70 4.971
9 H F H H H 12.90 4.889
10 H H F H H 7.3 5.137
11 H NO2 H H H 2.7 5.569
12* H NO2 OH H H 26.80 4.572
13* H NO2 H H Cl 4.2 5.377
14 H CH3 H H H 17.80 4.750
15* H H Ph H H 14.80 4.830
16* CF3 H H H H 22.60 4.646
17 H CF3 H H H 1.0 6.000
18 H H CF3 H H 4.7 5.328
19 F H H H H 1.6 5.796
20* F H H CF3 H 1.7 5.770
21 H NO2 H H H 3.3 5.481
22 H CH3 H H H 12.2 4.914
23 H H H H H 5.8 5.237
24 CF3 H H H H 2.9 5.538
25 H CF3 H H H 0.74 6.131
26 H H CF3 H H 3.0 5.523
27* CF3 H H CF3 H 3.2 5.495
28 H CF3 H CF3 H 2.1 5.678
29 F H H H H 2.9 5.538
30 H F H H H 4.4 5.357
31 H H F H H 3.90 5.400
32 H CF3 F H H 2.2 5.658
33* H CF3 H F H 1.1 5.959
34 F CF3 H H H 1.1 5.953
35 F H CF3 H H 2.6 5.585
36 F H H CF3 H 1.7 5.770
37 F H H H CF3 4.9 5.310
38 H CH3 H H H 4.1 5.387
39* H CN H H H 1.8 5.745
40 H NO2 H H H 2.0 5.699
41 H H NO2 H H 4.2 5.377
42 H OCH3 H H H 4.9 5.310
43* H CH (OET)2 H H H 1.8 5.745
*Test set. IC50: Inhibitory concentration 50%



56	 Indian Journal of Pharmaceutical Sciences	 January - February 2016

www.ijpsonline.com

probe atom and default energy cutoff of 30 kcal/mol. 
The Gasteiger, Gasteiger–Hückel, MMFF, Del-Re 
and Pullman charges were used to generate the 
partial charges on the studied molecules and explored 
models[24].

Comparative molecular similarity index analysis:
The CoMSIA descriptors, steric (S), electrostatic 
(E), hydrophobic (H), hydrogen bond donor (D), and 
hydrogen bond acceptor (A), were generated using a 
sp3 hybridized carbon atomwith +1 charge with the 
attenuation factor 0.3 and a van der Waals radius of 
1.4 Å; CoMSIA similarity indices (AF.K) between a 
molecule j and atoms i at a grid point were calculated 
by using Eqn (1) as follows

- 2
probe,k ik

=1
( ) = W−∑

n
q a
F,k iq

i
A J W e r

where q represents the grid point, i is the 
summation index, over all atoms of the molecule 
j under computation, Wik is the actual value of the 
physicochemical property k of atom i, and Wprobe.k is 
the value of the probe atom[25-27].

Hologram quantitative structure–activity 
relationship:
Hologram QSAR (HQSAR) is an emerging QSAR 
technique. With the transformation of the chemical 
representation of a molecule into its corresponding 
molecular hologram, this method requires no explicit 
3D information for the ligands. In this study, the 
HQSAR method with its default parameters compiled 
in Sybyl X 2.0 was performed by the following 
procedure: At first, a predefined set of rules was 
used to has a molecule into a molecular fingerprint 
that encoded the frequency of occurrence of various 
molecular fragment types; then, the molecular 

fingerprint was cut into strings at a fixed interval 
as specified by a hologram length (HL) parameter; 
and at last, all of the generated strings were hashed 
into a fixed length array. HQSAR does not require 
3D alignment for model generation and is sensitive 
to three parameters concerning hologram generation, 
including hologram length, fragment size and fragment 
distinction. The distinct fragments are atoms (A), 
bonds (B), connections (C), hydrogen atoms (H), 
chirality (Ch), and donor and acceptor (DA). Initially, 
various models were developed by using the default 
fragment size of 4–7, then based on the different 
fragment distinctions determined by the first step, 
the models were developed using different fragment 
sizes[11]. The better statistical results were obtained 
in fragment size 4–7 and A/B/C distinct. The A/B/C 
distinct fragment was applied successfully to different 
fragment sizes[28,29].

PLS calculations and validations:
The partial least squares (PLS) methodology analysis 
was carried out to determine the optimal number of 
components[26]. The cross-validated coefficient q2, 
as an internal statistical index of predictive power, 
was subsequently obtained. In order to test the real 
predictive ability of the best model derived by the 
training set, biological activities of the test set were 
predicted. The quality of the external prediction was 
documented using the standard deviation of error 
prediction (R2). Q2 and R2 are calculated according to 
the formula[30].
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Where Ymean means average activity value of the 
entire data set, while Yobs, Ypred and YCVpred represent 
observed, predicted and cross-validated activity values, 
respectively[31].

The CoMFA/CoMSIA results were graphically 
interpreted by field contribution maps using field 
type “stdev*coeff”, and the contour levels were set to 
default values.

Predicted r2:
To validate the derived CoMFA, CoMSIA and 
HQSAR models, biological activities of an external 

Fig. 1: Template and data set alignment.
Template 1-phenylpenta-1, 4-dien-3-one (a) used for the and 
molecular alignment (b) of the dataset.

ba
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test set of ten compounds were predicted using 
models derived from the training set. The predictive 
r2 value is based on only the test set molecules, which 
may be defined as shown in Eqn, r2

pred=SD-PRESS/
SD. Where SD is the sum of squared deviation 
between the biological activities of the test set 
molecules to the mean activity of the training set 
molecules, while PRESS is the sum of squared 
deviations between the observed and the predicted 
activities of the test molecules. The predictive ability 
of the models is expressed by the predicted r2 (Predr2) 
value, which is analogous to the cross-validated r2 
value (q2), as given in Table 2[30,31].

Model acceptability criteria:
According to Alexander Tropsha and Alexander 
Golbraikh, a predictive model must satisfy a set of 
statistical criteria. A QSAR model was considered 
predictive if the following conditions are satisfied 
(i) q2>0.50; (ii) r2>0.60[32,33].

Molecular docking:
To determine the possible binding interaction, 
conformations and to suggest more insight into the 
understanding of the binding affinity of androgen 
receptor antagonists, molecular docking analysis 
was carried out using the Surflex Dock in Sybyl X 
2.0. The crystal structure of AR was retrieved from 
RCSB Protein Data Bank (PDB entry code: 1T65). 
All attached ligands and water molecules have been 
removed at first, the polar hydrogen atoms and 
AMBER7FF99 charges were added. Protomol, a 
computational representation of the intended inhibitor 
5-α dihydrotestosterone (DHT) binding site, is used 
to guide molecular docking and predicted binding 
mode of AR antagonists in the antagonistic model[15]. 
The protomol bloat value was set as 1 and the 
protomol threshold value as 0.5 when a reasonable 

binding pocket was obtained. Other parameters are 
established by default in software[34,35]. To visualize 
the binding affinity mode between the antiprostate 
cancer derivatives and protomol site, the MOLCAD 
programme was employed to color coded display of 
electrostatic potential (EP), lipophilic potential (LP) 
and cavity depth (CD) to validate QSAR models.

RESULTS AND DISCUSSION

The β-ionone-based chalcones 1–15, α-ionone-based 
chalcones 16–22 and 4-hydroxy-β-ionone-based 
chalcones 23–43 showed considerable cytotoxicity 
in LNCaP cell line as antiprostate activity (Table 1). 
Compound 25 was most potent; 5, 11, 34, 39 and 40 
were moderate and 9, 17, 21 and 30 were least active 
ionone based chalcone compounds compared to parent 
analogue 25 which have electron-withdrawing group 
at the meta position. On displacement of -CF3 from 
the meta position to the para position (6, 18 and 26) 
or elimination of -CF3 with –NO2 (11, 21 and 40), –F 
(9 and 30), electron donating group -CH3 (14, 22 and 
38) have substantially weakened the cytotoxicity in 
prostate cancer cells in comparison to compound 25.

Using the series of ionone based chalcones 
derivatives possessing antiprostate cancer activity, 
3D-QSAR models were derived. The CoMFA and 
CoMSIA models were developed using common 
substructure-based based alignment scheme. During 
3D-QSAR analyses, we selected 10 compounds as 
the testing set for model validation (1, 12, 13, 15, 16, 
20, 27, 33, 39 and 43) and remaining in training set 
were selected by diversity method in such a way that 
the structural diversity and wide range of biological 
activity in the data set were added. The structures 
of compounds used in training and test set shown in 
Table 1.

The results of the PLS statistical analyses for 
the alignment approaches are summarized in 
Table 2. The CoMFA statistical model using steric 
and electrostatics contribution fields were 30.1% 
and 69.9% respectively, gave a cross-validated 
correlation coefficient (q2) of 0.527, non-cross-
validated correlation coefficient (r2) of 0.636, F value 
of 34.902, low standard error estimate (SEE) of 0.236 
with an optimum number of components 2 and Pred 
r2 of 0.621 was obtained. The predicted activities for 
the inhibitors along with the experimental activities 

TABLE 2: PARTIAL LEAST SQUARES STATISTICAL 
ANALYSIS OF COMFA AND COMSIA MODEL
PLS statistics CoMFA CoMSIA Field 

contribution
CoMFA CoMSIA

q2 (cross‑validated) 0.527 0.550 Steric 0.301 0.036
r2 0.636 0.671 Electrostatic 0.699 0.437
F values 34.902 26.581 Hydrophobic ‑ 0.090
SEEa 0.236 0.257 HB donor ‑ 0.296
Ncb 2 2 HB acceptor ‑ 0.141
Predicted r2 0.621 0.563
aStandard error of estimate, bOptimum number of components, HB: Hydrogen 
bond, PLS: partial least squares, CoMFA: comparative molecular field analysis, 
CoMSIA: comparative similarity indices analysis
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and residual values are listed in Table 3. The scatter 
plot for the actual pIC50 versus predicted pIC50 
values for the training and test sets is depicted in 
fig. 2a. Activities predicted by CoMFA model are in 
agreement with the experimental data. PLS analysis 
and predicted activities suggest that a reliable CoMFA 
model was developed.

In CoMSIA analysis, hydrophobic, hydrogen-bond 
donor and hydrogen-bond acceptor fields in addition 
to steric and electrostatic fields were calculated. 
A combination of various fields was employed to 
obtain the optimum result. Using compounds of the 
training set and a combination of steric, electrostatic 
and hydrogen-bond acceptor fields; a model with 

TABLE 3: PREDICTED AND RESIDUAL VALUE OF COMFA, COMSIA AND HQSAR RELATIONSHIP MODEL
Compound number CoMFA CoMSIA HQSAR

Predicted pIC50 Residual Predicted pIC50 Residual Predicted pIC50 Residual
1* 4.939 0.083 5.095 −0.073 4.871 0.083
2 4.936 0.068 5.026 −0.022 4.878 0.068
3 5.024 −0.002 5.026 −0.004 5.016 −0.002
4 5.049 0.037 5.026 0.060 5.107 0.037
5 5.419 0.134 5.146 0.407 5.718 0.134
6 5.086 −0.045 4.993 0.048 5.234 −0.045
7 5.358 −0.298 5.119 −0.059 5.251 −0.298
8 5.041 −0.07 5.110 −0.139 5.095 −0.070
9 4.989 −0.100 5.000 −0.111 5.058 −0.100
10 4.930 0.207 4.994 0.143 5.418 0.207
11 5.592 −0.023 5.485 0.084 4.817 −0.023
12* 5.566 −0.994 5.471 −0.899 5.428 −0.994
13* 5.567 −0.19 5.481 −0.104 4.984 −0.19
14 4.926 −0.176 5.139 −0.389 4.775 −0.176
15* 5.235 −0.405 5.267 −0.437 4.661 −0.405
16* 5.498 −0.852 5.401 −0.755 5.718 −0.852
17 5.761 0.239 5.502 0.498 5.273 0.239
18 5.416 −0.088 5.372 −0.044 5.251 −0.088
19 5.385 0.411 5.510 0.286 5.769 0.411
20* 5.355 0.415 5.531 0.239 5.418 0.415
21 5.619 −0.138 5.572 −0.091 4.984 −0.138
22 5.289 −0.375 5.541 −0.627 5.464 −0.375
23 5.356 −0.119 5.537 −0.300 5.469 −0.119
24 5.622 −0.084 5.617 −0.079 6.235 −0.084
25 6.172 −0.041 5.937 0.194 5.510 −0.041
26 5.460 0.063 5.405 0.118 5.402 0.063
27* 5.872 −0.377 5.838 −0.343 5.471 −0.377
28 5.739 −0.061 5.513 0.165 5.488 −0.061
29 5.487 0.051 5.592 −0.054 5.332 0.051
30 5.485 −0.128 5.578 −0.221 5.295 −0.128
31 5.480 −0.080 5.625 −0.225 5.679 −0.080
32 5.572 0.086 5.677 −0.019 5.818 0.086
33* 5.735 0.224 5.509 0.450 5.886 0.224
34 5.978 −0.025 5.617 0.336 5.531 −0.025
35 5.511 0.074 5.367 0.218 6.006 0.074
36 5.370 0.400 5.469 0.301 5.471 0.400
37 5.260 0.050 5.505 −0.195 5.221 0.050
38 5.720 −0.333 5.573 −0.186 5.785 −0.333
39* 5.671 0.074 5.504 0.241 5.655 0.074
40 5.720 −0.021 5.657 0.042 5.503 −0.021
41 5.486 −0.109 5.426 −0.049 5.271 −0.109
42 5.223 0.087 5.406 −0.096 5.713 0.087
43* 5.231 0.514 4.933 0.812 5.273 0.514
* is test set, CoMFA: comparative molecular field analysis, CoMSIA: comparative similarity indices analysis, HQSAR: hologram quantitative structure activity relationship



January - February 2016	 Indian Journal of Pharmaceutical Sciences	 59

www.ijpsonline.com

cross-validated correlation coefficient (q2) of 0.550, 
non-cross-validated correlation coefficient (r2) of 0.671, 
F value of 26.581, low standard error estimate (SEE) 
of 0.257 with an optimized component of 2 and Pred 
r2 of 0.563 was obtained. The field contributions of 
steric, electrostatic hydrophobic, hydrogen bond donor 
and hydrogen bond acceptor fields were 0.036, 0.437, 
0.090, 0.296 and 0.141, respectively.

The statistical parameters are summarized in 
Table 2. The predicted and experimental activities for 
inhibitors with their residues are listed in Table 3 and 
the scatter plot for the actual pIC50 versus predicted 
pIC50 values for the training and test sets is displayed 
in fig. 2b. The predicted activities are in accordance 
with the experimental data, indicating that a reliable 
CoMSIA model was developed.

3D coefficient contour maps were generated to 
visualize the results of the 3D-QSAR models. The 
CoMFA and CoMSIA results were graphically 
interpreted by the field contribution maps using 
the STDEV*COEFF field type. The contour maps 
of CoMFA (steric and electrostatic), and CoMSIA 
(steric, electrostatic, hydrophobic, hydrogen-bond 
donor and acceptor fields) are shown in figs. 3 and 4, 
respectively. Compound 25 was labelled and displayed 
in the map in aid of visualization.

In fig. 3a, the contour map of the steric field of 
CoMFA model, a large green contour polyhedron 
located around the hydroxy group suggested that 
appropriately bulky groups had favourable steric 
interactions. This may be the reason why compounds 
with –CF3 substituent (5, 7, 25, 28, 32 and 34) in R3 
region showed potent antiprostate cancer activity than 
molecules with and without any substituent at this 

particular position R3. Two yellow colour contours 
indicated that bulky groups were steric unfavourable 
in this direction as steric clash might occur. A small 

Fig. 3: Contour maps for CoMFA model.
Contour maps of compound 25 for CoMFA model (a) steric and 
(b) electrostatic.

Fig. 2: Correlation plot of CoMFA and CoMSIA.
Correlation between the experimental and predicted activities of (a) CoMFA and (b) and CoMSIA. ♦- Training set, ■- test set.

ba

ba

Fig. 4: Contour maps for CoMSIA model.
C o n t o u r  m a p s  o f  c o m p o u n d  2 5  f o r  C o M S I A  m o d e l 
(a) steric, (b) electrostatic, (c) hydrophobic, (d) hydrogen donor 
and (e) hydrogen acceptor contour maps for compound 25.

a b

dc

e
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green contour beside ring was consistent with the 
light increase in activity.

The electrostatic contour map of CoMFA model can 
be seen clearly from the fig. 3b. The blue contours 
indicate that electropositive substituents would 
increase the AR antagonist activity with protein, while 
red colour indicates that they should be the electron 
rich groups decreased. Since the red contours were 
found near the hydroxy group of compound 25, which 
is an electron rich functionality and thus exhibit high 
AR antprostate cancer activity.

The steric and electrostatic contours of the CoMSIA 
model were similar to the CoMFA contours fig. 4. 
However, in the steric field there was a green colour 
and blue colour is favoured while the yellow and red 
coloured is disfavoured near the functional group. 
Yellow colour below the phenyl ring shows the 
requirement of less bulky substituents, while near 
the cyclic ring green coloured preferred for bulky 
substituents (fig. 4a). For electrostatic Blue coloured 
near the phenyl ring shows that electron donating 
group is required at that position. This contour 
map was similar with CoMFA model. As for the 
electrostatic field, the main blue and red polyhedrons 
were similar with that in CoMFA model (fig. 4b).

In the hydrophobic interaction yellow colour shows 
that the phenyl ring is active and contributing in the 
lipophilicity, while white coloured near unsaturated 
cyclic ring is disfavouring lipophilicity (fig 4c). In 
the hydrogen bond donor interaction analysis cyan 
and purple coloured shows favouring and disfavouring 
nature with respect to biological activity near 
unsaturated cyclic ring (fig 4d). In the hydrogen bond 
acceptor interaction study red coloured disfavoured 
the acceptor group attached with unsaturated ring 
and contributing less in the biological activity while 
magenta colour near unsaturated cyclic ring favours 
biological activity fig. 4e.

HQSAR analyses were executed by screening the 
12 default series of hologram length values ranging 
from 53–401 bins, initially using the fragment size 
default (4–7) on different distinct fragments as 
A/B/C, A/B/H, A/B/Ch, A/B/DA, A/B/C/H, A/B/C/
Ch, A/B/C/DA, A/B/H/Ch, A/B/H/DA, A/B/Ch/DA, 
A/B/C/H/DA, A/B/C/H/DA, A/B/C/H/DA and A/C/H/
Ch/DA. The patterns of fragment count from the 

training set inhibitors were related to the experimental 
biological activity using PLS analysis. The best 
statistical parameter was obtained from PLS analyses 
with A/B/C. The influence of fragment size is of 
fundamental importance in the generation of HQSAR 
models, as this parameter controls the minimum and 
maximum lengths of fragments to be encoded in the 
hologram fingerprint. 

The HQSAR statistical model generated using default 
fragment size (4-7) with fragment distinct (A/B/C) 
gave a cross-validated correlation coefficient (q2) of 
0.670, non-cross-validated correlation coefficient (r2) 
of 0.746, low standard error estimate (SEE) of 0.203 
with an optimized component of 4, and Pred r2 of 
0.732 was obtained (Table 4). Thus, the HQSAR 
model obtained here was reliable. The predictive and 
residual pIC50 values of data based on the HQSAR 
model are listed in Table 3. The scatter plot for the 
actual pIC50 versus predicted pIC50 values for the 
training and test sets is displayed in fig. 5.

HQSAR graphically provides information 
on the atomic or fragment contributions to the 
activities as different colours. The colours at the 
green end (yellow, green-blue and green) reflect 
positive contribution, colours at the red end of 
the spectrum (red, red-orange and orange) reflect 
negative contribution and neutral contributions 
are coloured in white. The most active molecular 
fragments of compound 25, most potent antiprostate 
cancer compound of the data set are shown in fig. 6. 
According to the contribution maps, the molecular 
fragments corresponding to the unsaturated ring are 
strongly related to biological affinity at C1, C2 and 
C6 (coloured in green and yellow).

The regions that negatively contribute to biological 
activity include the methyl group attached to phenyl 
ring at R3, and also found that the electron-donating 
groups reduces activity and could be replaced by 

TABLE 4: RESULTS OF HOLOGRAM QUANTITATIVE 
STRUCTURE ACTIVITY RELATIONSHIP ANALYSES 
ON THE KEY STATISTICAL PARAMETERS USING 
FRAGMENT‑SIZE DEFAULT
Model Fragment 

size
Fragment 
distinct

q2 r2 Predicted 
r2

SEE HL n

1 4–7 A/B/C 0.670 0.746 0.732 0.203 199 4
q2: Cross‑validated correlation coefficient, r2: non cross‑validated correlation 
coefficient, SEE: cross‑validated standard error, HL: hologram length, 
n: optimal number of components, fragment distinction, A: atoms, B: bonds, 
C: connections, SEE: standard error of estimate
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electron-withdrawing substituents with different 
structural and physicochemical features with the aim 
to increase the affinity and potency of the compounds 
studied in this work.

The predictive powers of the CoMFA and CoMSIA 
models were validated by the external test set of 14 
compounds. The predicted pIC50 values of the test 
compounds are in agreement with the experimental 
data within an acceptable error range. The r2 pred 
values were calculated to be 0.621 and 0.563 for 
CoMFA and CoMSIA models, respectively. A test 
set of 10 compounds excluded from the construction 
of 3D-QSAR models were used to further validate 
the predictive ability of the obtained models. The 
correlation coefficient r2 (r2pred) of the CoMFA and 
CoMSIA models were 0.621 and 0.563, respectively 
indicating a good predictive ability. External 
validation using Tropsha’s validation methods was 
performed to further assess the predictive ability of 
the CoMFA and CoMSIA models[32,33]. This validation 
was performed using the 10 test set compounds 
not included in the development of the model. 
CoMFA and CoMSIA models satisfied the following 
conditions (i) q2=0.53>0.50; (ii) r2=0.64>0.60 and 
(i) q2=0.55>0.50; (ii) r2=0.67>0.60. 

The residual value obtained from observed and 
predicted activities of the training and test set by the 
best CoMFA (SE), CoMSIA (SEHDA) and HQSAR 
model (A/B/C). The connected HQSAR model 
showed good external predictive ability in comparison 
with the CoMFA model and the CoMSIA models for 

the external test set. These statistical results for the 
test set molecules provide powerful verification that 
the CoMFA, CoMSIA and HQSAR models so derived 
are able to predict well the anti prostate activity of 
structurally varied data set. The validation results 
indicate that the derived 3D-QSAR models could 
be used to predict the inhibitory activities and to 
design ionone-based chalcones in LNCaP cell line as 
antiprostate activity.

Docking was employed to explore the binding mode 
between these ionone based chalcone derivatives 
and the androgen receptor protein inhibitor 5-α 
dihydrotestosterone (protomol) site, to examine the 
stability of QSAR models which were previously 
generated.

We selected the most potent compound 25 in the 
docking experiment to perform the deeper docking 
analysis. According to the best docking conformation 
of the most potent compound 25 the –CF3 at R3 
established key interaction with the THR 877, fluorine 
atom acted as a hydrogen bond acceptor and forming 
H-bonds with the –H atom of THR 877. The THR 877 
amino acid was required for the growth of androgen 
receptor. The required THR 877 amino acid inhibition 
was achieved with the –NH2 functional group of the 
ionone based chalcones derivatives. The –OH group 
appeared too involved in a net of both hydrogen bond 
acceptor and hydrogen bond donor interaction. The oxy 
of -OH formed hydrogen donor interaction with NH2 
of ARG 752; -OH of H atom created hydrogen bond 
donor interaction with oxy of GLN 711 amino acid and 
dock score was found to be -3.183 kcal/mol (fig. 7a).

Fig. 5: Correlation plot of HQSAR.
Correlation between the experimental and predicted activities of 
HQSAR model. ♦- Training set, ■- test set.

Fig. 6: HQSAR contour map for compound 25.
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To visualize the secondary structure element of the 
binding, the MOLCAD was applied with inhibitor 
site. In most active compound 25, aromatic ring 
present on the slight electrostatic potential, in highly 
lipophilic region and in deeper cavity. The R3 portion 
suspend on the slight electrostatic potential region, 
slight lipophilic region and upper region of cavity 
depth. The MOLCAD surface of inhibitor 5-α 
dihydrotestosterone (DHT) binding site was created 
as protomol and map displayed with electrostatic 
potential (EP) to examine and validate the CoMFA 
electrostatic contour map.

The MOLCAD surface of the DHT was also 
created and displayed with lipophilic potential 
(LP) to examine the CoMSIA hydrophobic contour 
map (fig. 7b). The ramp for LP displays from red 
(lipophilic area) to blue (hydrophilic area) color 
to examine CoMSIA contours map. The R3 side 
chain and aliphatic chain was in green and R3 
aromatic phenyl ring in red area, which suggested 
that slight hydrophobic and more hydrophobic groups 
respectively would increase potency.

The EP contour map binding affinity confirmed and 
validates the CoMFA model fig. 7c. The docking 
of compound 25 into the DHT site; the red color 
shows the electron-withdrawing area and purple color 
shows the electron-donating area. The observations 

taken from fig. 7 significantly related those of the 
CoMFA electrostatic contour map. In detail, the R3 
region were in the blue region, which suggested 
that an electron-withdrawing substituent would be 
favorable; the R4, R5 position was in a red region, 
which indicated that electron-donating groups may 
enhance potency.

The color ramp for cavity depth ranges from orange 
(highest cavity depth) to blue (lowest cavity depth). 
The R3 (-CF3) side chain was in the brown color, 
which recommended that part in deeper cavity region 
groups would increase potency; the phenyl, -C=O 
and C1 of unsaturated ring was in a blue color which 
demonstrated the region of upper cavity (fig. 7d).

The important key finding obtained from CoMFA, 
CoMSIA, HQSAR and docking interaction analysis 
promotes us to suggest some novel antiprostate 
cancer compounds. The molecular modelling 
analysis provided adequate information regarding 
the structural requirements for enhanced antiprostate 
activity. The CoMFA, CoMSIA and HQSAR contours 
contribution maps guide us to optimize the accessible 
scaffold. Furthermore docking estimated the binding 
affinity of the most active compound. Based on 
the molecular modelling recommendation in detail, 
less bulky, electron withdrawing, electron donating, 
hydrogen bond donor and acceptor groups at the R2 
position enhance activity; bulky, electron-withdrawing 
and hydrophobic substituent are favored at R3; and 
minor, fewer bulky substituents at R4, R5 and R6 
assistance potency through CoMFA and CoMSIA. 
Moreover HQSAR advise that unsaturated and linked 
aliphatic side chain showed positive contribution. The 
group -CF3, and -OH were essential for binding to 
the inhibitors site cavity (protomol). The structure-
activity relationship explored by this study is 
presented in fig. 8. Based on this suggestion, we 
designed a series of novel antiprostate molecules. 
These designed molecules were aligned in the 
database by align database module, and their pIC50 
values were predicted by the previously established 
CoMFA, CoMSIA, HQSAR models and docking 
scores.

According to the predictions, twelve structures of 
newly designed derivatives, predicted pIC50 values 
their and dock score are shown in Table 5, most of 
the designed derivatives showed better potencies but 

Fig. 7: Binding conformations of the compound 25 with receptor.
Binding conformations of the compound 25 (a) at the inhibitor 
binding site of androgen receptor (PDB code 1T65), (b) more insight 
of docking analysis by a MOLCAD lipophilic potential binding, 
(c) electrostatic potential and (d) cavity depth.

b

dc

a
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compounds S6 and S9, which were the most active 
derivatives in the database and verified in comparison 
to compound 25. These results confirm the structure-
activity relationship obtained from QSAR and docking 
studies, we thought that the designed molecules 
testified by us impart antiprostate cancer and remains 
leads for forthcoming research.

In the present study, QSAR analysis and docking 
have been applied to a set of ionone based chalcones 
derivatives. The models generated have confirmed 
to be statistically precise with higher q2 and r2. 
Molecular modeling methods were performed to 
understand the structural features responsible for the 
affinity of the ligands for AR. The bulky, negatively 
charged substituents and H-bond acceptors at R2, R3, 
R4, R5 and R6 position would increase the activity; the 
substitution at the phenyl position is very important 

for improved activity. The hydrophobic substituent 
at the position of the linker would increase the 
activity. Cylic rings at the both sides of ionone 
based chalcones derivatives are required for the 
cytotoxic of AR antagonist. Here, the hydrophobic 
property of phenyl ring plays a key role in the 
anti-prostate cancer activities. These results provided 
important clues that were used to design twelve 
novels anti-prostate cancer compounds with high 
predicted activity.
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