Short Communications

Simultaneous HPLC Estimation of Omeprazole and Domperidone from Tablets
LAHSHI SIWASUBRAMANIAN AND V. ANILKUMAR
674-676

Isolation and Evaluation of Fenugreek Seed Husk as a Granulating Agent
AMELIA AVACHAT, K. N. GUJAR, V. B. KOTWAL AND SONALI PATIL
676-679

Synthesis and In Vitro Efficacy of some Halogenated Imine Derivatives as Potential Antimicrobial Agents
A. K. HALVE, DEEPTI BHADAURIA, B. BHASKAR, R. DUBEY AND VASUDHA SHARMA
680-682

Simultaneous Spectrophotometric Estimation of Atorvastatin Calcium and Ezetimibe in Tablets
S. S. SONAWANE, A. A. SHIRKEDKAR, R. A. FURSULE AND S. J. SURANA
683-684

High Performance Thin Layer Chromatographic Estimation of Lansoprazole and Domperidone in Tablets
J. V. SUSHEEL, M. LEKHA AND T. K. RAVI
684-686

Antimicrobial Activity of Heliocrates isora Root
S. VENKATESH, K. SAILAXMI, B. MADHAVA REDDY AND MULLANGI RAMESH
687-689

Synthesis and Antibacterial Activity of 2-phenyl-3,5-diphenyl (substituted)-6-aryl-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4-d]thiazoles
689-692
Albumin Microspheres of Fluticasone Propionate Inclusion Complexes for Pulmonary Delivery

Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Mumbai - 400 098, India, 1Board of Radiation and Isotope Technology and Medical Cyclotron Facility, Mumbai - 400 012, India, 2Department of Medicine, Bombay Veterinary College, Mumbai - 400 012, India

Fluticasone propionate (FP) is a lipophilic drug used to control inflammation in patients with asthma, allergic rhinitis and chronic obstructive pulmonary disease (COPD)1. The poor aqueous solubility (<1 µg/ml) and dissolution of FP may be an absorption rate limiting step in pulmonary drug delivery and the insoluble particles are removed by the mucociliary clearance in the upper airways and by macrophages in the alveoli2. Cyclodextrin complexes might be of a great value in pulmonary delivery by increasing the solubility and dissolution rate of the complexed drug and thereby lead to decreased clearance, increased absorption and faster onset of the action3. The objective of the present study was to investigate complexation of FP with 2-hydroxypropyl-β-cyclodextrin (HPβCD) and albumin for improved delivery to lung.

MATERIAL AND METHODS

Equilibrium solubility of FP (Sun Pharmaceutical Industries Ltd, India) was determined in aqueous HPβCD (Gangawal Chemicals, India) solution at 37º±2º for 7 d, and solubility constant was calculated from phase-solubility diagram. HPβCD inclusion complex of FP was prepared by the spray drying and freeze drying techniques in the molar ratio 1:1. These complexes were dissolved in bovine serum albumin (S. D. Fine Chemicals Ltd., India) solution, and subjected to spray and freeze drying methods. Microparticles were characterized for various physicochemical properties such as particle size distribution, FTIR, DSC and X-ray diffraction, SEM studies and drug content. *In vitro* drug release studies were carried out using USP Type IV apparatus in simulated lung buffer (PBS pH 7.4), maintained at 37º±0.5º, and fine particle fraction (FPF) determined by twin stage impinger (TSI).

Microspheres were radio labeled with technetium (99mTc) using SnCl₂ as reducing agent. *In vivo* lung deposition studies were carried out using New Zealand rabbits. Scintigraphic images of rabbit lungs were taken at periodic intervals viz., 2, 4, 8 and 12 h using a gamma camera (Millennium MPS Gamma Camera). *In vivo* efficacy study was carried out in LPS induced bronchoalveolar inflammation in guinea pigs.

RESULTS AND DISCUSSION

A Type solubility diagram was obtained for FP which could be attributed to formation of 1:1 M inclusion complex with HPβCD (Higuchi and Connors method4). Release data from microspheres showed significant improvement of the dissolution rate of FP, and a controlled release was obtained in the presence of higher amount of albumin (fig. 1). Spray-dried products presented higher release profiles than freeze-dried products. The surface of microspheres prepared by spray drying was spherical and smooth with an

*For correspondence

E-mail: atullohade@yahoo.co.in
average diameter of 4 μm where as freeze-dried microspheres formed irregularly shaped microparticles with average diameter of 15 μm. DSC and XRD studies revealed loss of drug crystallinity. FTIR spectra confirmed the existence of inclusion complex. DPI bends showed a FPF of 35-42% in case of spray dried microparticles, compared to blends prepared with free drug and freeze dried particles (10-18%). (figs. 2 and 3). The lung deposition was calculated as ratio of activity in the lungs to activity emitted from device, and found to be only 8-10% of the total administered dose. The gamma scintigraphic images showed the presence of activity in lungs for up to 12 h (fig. 4), whereas free 99mTc cleared rapidly over a period of 6 min. More activity was deposited in peripheral region then central region of lungs indicating fine particles produced by microspheres. Furthermore, a decrease in the counts in the central region was observed over the time period resulting in a decrease in central to peripheral ratio (Table 1). In the in vivo efficacy studies, formulation delivered every 5th day of therapy with FP encapsulated in microspheres was as effective as daily FP therapy in decreasing lung inflammation and showed a marked lowering of total neutrophil

<table>
<thead>
<tr>
<th>Time</th>
<th>Left lung</th>
<th>Right lung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C (%)</td>
<td>I (%)</td>
</tr>
<tr>
<td>Initial (5 min)</td>
<td>25.23</td>
<td>40.44</td>
</tr>
<tr>
<td>2 h</td>
<td>23.97</td>
<td>39.28</td>
</tr>
<tr>
<td>6 h</td>
<td>21.93</td>
<td>39.05</td>
</tr>
<tr>
<td>12 h</td>
<td>18.39</td>
<td>38.88</td>
</tr>
</tbody>
</table>

Fig. 2: Percent FPF of spray dried microspheres by TSI at 60 l/min. □ - without carrier while ■ - with carrier

Fig. 3: Percent FPF of freeze dried microspheres by TSI at 60 l/min □ - without carrier while ■ - with carrier

Fig. 4: Gamma scintigraphy images after administration of technetium labeled microspheres of FP
Lung scans were taken at different time points after administration of technetium labeled microsphere formulation of FP to New Zealand White rabbits
counts (fig. 5).

Albumin microsphere systems of these FP- HPβCD complexes prepared by spray drying are an effective treatment regimen for asthma, which can provide localized sustained action.

ACKNOWLEDGEMENTS

The authors wish to thank BRNS-DAE (Sanction no. 2004/35/5/BRNS) for financial assistance, Burculodomo Ingredients for lactose and Sun Pharmaceutical Ltd., India for FP.

REFERENCES

Design and Development of Thermoreversible Mucoadhesive Microemulsion for Intranasal Delivery of Sumatriptan Succinate

R. S. BHANUSHALI AND A. N. BAJAJ *

C. U. Shah College of Pharmacy, S. N. D. T. Women’s University, Juhu Campus, Santacruz (West), Mumbai - 400 049, India

Migraine attack is a troublesome physiological condition associated with throbbing intense headache in one half of the head. Sumatriptan is rapidly but incompletely absorbed following oral administration and undergoes first-pass metabolism, resulting in a low absolute bioavailability of 14% in humans1.