Antibacterial Activity of Polyphenols of *Garcinia Indica*

C. LAKSHMI, K. AKSHAYA KUMAR, T. J. DENNIS¹ AND T. S. S. P. N. S. SANATH KUMAR*¹,

Dr. Satwalekar Research Laboratory, Vivik Vardhini College, Hyderabad-500 095, 'Chemical Research Unit, CCRAS, Department of Chemistry, Osmania University, Hyderabad-500 007, India

Lakshmi, et al.: Antibacterial Activity of Polyphenols of *Garcinia indica*

The aim of present work is to study the antibacterial activity of polyphenols isolated from the ethyl acetate soluble of methanol extract of stem bark of *Garcinia indica* against *Staphylococcus aureus*, *Salmonella typhi* and *Escherichia coli* by paper disc method. The results showed good antibacterial activity against *S. aureus* at higher concentrations, moderate at lower concentrations, against *S. typhi* moderate at higher concentrations but no activity against *E. coli* even at higher concentration for flavononylflavone. With proauthocyanin *S. Aureus*, *S. Typhi* and *E. coli* showed good antibacterial activity at higher concentration only.

Key words: Antibacterial activity, biflavonoid, flavononylflavone, *Garcinia indica*, proauthocyanidin

*Garcinia* has more than 200 listed polygamodioecious trees and shrubs distributed widely in nature, of which 30 are identified in India. *Garcinia indica* (choiss) belongs to Clusiaceae (earlier Guttiferae) family is a slowly growing polygamodioecious tree¹. It is distributed through out topical Asia, Africa and Polynesia². In India it is found in the topical humid evergreen rain forest of Western Ghats of South India as well as in the North Eastern states of India³. It is popularly known as *kokum* in Hindi, *amsol* in Marati and *punarpulli* in Malayalam in India¹. It is now included under the list of endangered species of medicinal plants of South India⁴.

The root is astringent⁵. Fruit fat is demulcent and emollient⁶. It is a remedy for dysentery and diarehia, tumors, heart complaints, stomach acidity and liver disorders⁷. Fruit rind extracts have been shown antifungal and antioxidant properties⁸. Garcinol, the compound isolated from fruit rind exerts antiinflammatory effects and is a neuroprotectant⁹.
(-) Hydroxycitric acid from leaves and fruit rind is antiobesity and anti cholesterol drug\(^9\). Seed oil rich of long chain fatty acid methyl esters can be used as environmental friendly non toxic biodiesel\(^1\) a substitution for conventional diesel. The fruits are also used to prepare red beverage which has bilious action\(^1\). The fruit rind is widely used traditionally in Srilanka and southern parts of India because of pleasant flavour and sour taste for culinary purposes.

D-leucine from leaves\(^1\), (-) hydroxyl citric acid from leaves and fruit rind\(^1\), fatty acids and glycerides from seeds\(^1\), anthocyanin glycosides from fruits\(^1\), garcinol, isogarcinol and cambaginol from fruit rinds\(^1\), phenolic compounds like xanthones, biflavanoids from heartwood\(^1\) and stem bark\(^1\) and fatty acids from seed oil\(^1\) were so far isolated from this plant.

In this communication we report isolation, characterisation and antibacterial activity of two poly phenols – a proauthocyanidin (I) and a biflavonoid (III) from the ethyl acetate soluble fraction of methanol extract of stem bark of \(G.\) indica and preparation of their derivatives.

Stem bark of \(G.\) indica (500 g) was procured from south canara of Karnataka state, India during summer. The plant was identified and voucher specimen was deposited with Department of Botany, Osmania University, Hyderabad, India. The collected plant material subjected to shade drying and reduced to shavings. These shavings were coarsely powdered and first defatted with petroleum ether and then extracted with methanol under cold percolation method. The methanol extract on concentration provided a dark coloured semisolid (9 g). This semisolid mass was successively extracted with chloroform and ethyl acetate. The ethyl acetate soluble were washed with distilled water to remove water soluble compounds and dried over sodium sulphate. After solvent removal a brown coloured solid (5 g) was obtained. It was dissolved in ethyl acetate (50 ml) and fractionally precipitated with petroleum ether (15 ml) for 25 times. The solid fractions 5 to 15 were combined and the process of fractional precipitation was repeated. The solid obtained from the last 10 fractions were mixed and purified on safodox LH 20 using ethanol-dichloromethane (1:1 v/v) to get proanthocyanidin I, mp is 230\(^\circ\) (300 mg).

The alkali solubles of the solid fractions 18 to 25 was chromatographed over silica gel (200 mesh) and eluted with benzene, benzene - ethyl acetate 8:2, 7:3, 1:1 (v/v) and ethyl acetate successively. Benzene - ethyl acetate (7:3) fractions gave biflavonoid III, 340\(^\circ\) (100 mg).

The proauthocyanidin (I) (fig. 1a) gave positive ferric chloride test suggests the presence of phenolic –OH. On treatment with dimethyl sulphate and potassium carbonate in acetone yielded octamethyl ether (Ia) suggesting eight phenolic –OH were present in the molecule. This ether further on treatment with acetic anhydride in pyridine yielded triacetate of ether (Ib). This suggests that three more –OH’s in the form of alcoholic nature were also present in the molecule. The high resolution mass spectra of I, Ia and Ib suggested that I is dimeric proanthocyanidin. Based on biogenetic considerations the linkage of dimer has intramolecular flavonyl linkage between C-4 and C-8. On hydrolysis of this proanthocyanidin (I) with methanolic hydrochloric acid cyanidin chloride (II)

![Fig. 1: Structures of polyphenols](image-url)  
(a) Proantocyanidin and derivatives, (b) Cyaniding chloride, (c) Flavanonylflavone and derivative
(fig. 1b) only obtained. No stereo chemical studies were carried out for these compounds.

The biflavanoid (III) (fig. 1c) gave positive phenolic and positive flavonoid tests with ferric chloride and Mg+HCl reagents respectively. This implies that the flavonoid is a phenolic hydroxy compound. On treatment with dimethyl sulphate and potassium carbonate in acetone a hepta methyl ether (IIla) was formed. This methyl ether further treatment with acetic anhydride in pyridine did not yielded any acetyl derivative. This suggests that no alcoholic hydroxys were present in the molecule. based on $^1$H, $^{13}$C NMR and high resolution mass spectra the compound has been confirmed as I-5,II-5,II-7,II-7,II-3,I-4,II-4'-heptahydroxy[1-3,II-8]flavononylflavone (III), a compound earlier reported from *Garcinia nervosa* by Babu et al.[20]. This is the first report from this plant and second report from *Garcinia* species.

The antibacterial studies were carried out by paper disc method which is easy, better and comparatively fast when compared with tube dilution method or phenol coefficient method or slide cell technique[21]. Ciprofloxacin was used as standard anitbacterial agent (1 mg/ml). The activity was evaluated by using 24 h cultures of *Staphylococcus aureus*, *Salmonella typhi* and *Escherichia coli* and the nutrient broth Labelmco was prepared from beef extract as culture medium. The bacteria strains used in this experiment were cultured in the Microbiology Department, Osmania University, Hyderabad.

Culture medium prepared by taking Labelmco, sodium chloride and peptene in double distilled water. The solution was filtered and the pH was adjusted to 6.8-7.0. The medium was sterilised in autoclave at 121° at 15 Lbs pressure for 15 min. The test samples of 10 mg were dissolved in 10 ml of acetone to get 1000 µg/ml dilution. Different dilutions like 400 µg/ml, 200 µg/ml, 100 µg/ml and 50 µg/ml were prepared from this.

Paper disc of 4 mm dia were dipped in test solutions of different dilutions and standard solution. After drying the disc it was placed on culture medium in petridishes and seeded with 1 ml of experimental bacteria culture of *S. aureus*, *S. typhi* and *E. coli* and incubated at 37±1° for 24 h. The petridishes were checked for growth inhibition zone after 24 h. The crude and flavononylflavone showed good activity against *S.aureus* even at lower concentrations while partial with proauthocyanadin. *E. coli* showed partial activity with crude and proauthocyanadin at higher concentrations no activity with flavononylfavone even at higher concentrations. Crude, flavononylflavone and proauthocyanadin showed medium activity only at higher concentrations with *S. typhi*. All the derivatives showed no activity with bacteria even at higher concentrations. Table 1 showed the anti bacterial activity of the compounds.

**TABLE 1: ANTI BACTERIAL ACTIVITY OF CRUDE EXTRACT AND POLY PHENOLS OF GARCINIA INDICA**

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Crude</th>
<th>Comp I</th>
<th>Comp III</th>
<th>CF$_{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td><em>Staphylococcus aureus</em></td>
<td>10</td>
<td>13</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td><em>Salmonella typhi</em></td>
<td>10</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td><em>Escherichia coli</em></td>
<td>17</td>
<td>19</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Values are mean inhibition zone in mm, A=400 µg, B=200 µg, C=100 µg, D=50 µg, E=10 µg; CF$_{10}$=Ciprofloxacin 10 µg

ACKNOWLEDGEMENTS

The authors are thankful to Dr. Prabhakar, Department of Botany, Osmania University, Hyderabad for identifying the plant material, Dr. Gopal Reddy, Department of Microbiology, Osmania University, Hyderabad for providing antibacterial strains and Central Instrumental Centre, Ohio State University , USA for $^1$H, $^{13}$C NMR and high resolution mass spectra. One of the authors (CL) is thankful to UGC, New Delhi, India for a teacher fellowship.

REFERENCES

7. Bhashkar S, Nehta S. Stabilised anthocyanin extract from *Garcinia indica* US patent 2006/0230983/A.
Evaluation of Antimicrobial Efficacy of Flavonoids of Withania Somnifera L.

G. SINGH* AND P. KUMAR

Laboratory of Plant Tissue Culture and Secondary Metabolites, Department of Botany, University of Rajasthan, Bapu Nagar, Jaipur-302 055, India

Singh and Kumar: Antimicrobial Efficacy of Withania somnifera L.

In the present study antimicrobial activity of Withania somnifera L. Dunal (Solanaceae) has been evaluated against selected pathogens. Free and bound flavonoids of different parts (root, stem, leaf and fruit) of W. somnifera have been studied for their antimicrobial activity using disc diffusion assay against three Gram negative bacteria (Escherichia coli MTCC 46, Proteus mirabilis MTCC 3310 and Pseudomonas aeruginosa MTCC 1934), one Gram positive bacteria (Staphylococcus aureus MTCC 3160) and three fungi (Candida albicans MTCC 183, Aspergillus flavus MTCC 277 and Aspergillus niger MTCC 282). Minimum inhibitory concentration (MIC) of the extracts was evaluated through micro broth dilution method, while minimum bactericidal/fungicidal concentration was determined by subculturing the relevant samples. C. albicans was found to be the most susceptible organism followed by S. aureus, P. mirabilis, E. coli and P. aeruginosa. Out of the tested organisms, A. flavus and A. niger were observed to be resistant as none of the tested extracts showed activity against them. Total activity (TA) of extracts (ml/g) against each sensitive pathogens was also evaluated. Bound flavonoid extract of root showed best activity against C. albicans (IZ 30, MIC 0.039, MFC 0.039, respectively). However all the microorganisms were found to be sensitive against the extracts tested. Total activity of bound flavonoid extract of root was found to be same for E. coli, P. mirabilis, S. aureus and C. albicans (153.84 ml/g). Results of the present study reveal that extracts of W. somnifera showing great antimicrobial potential against test microorganisms may be exploited for future antimicrobial drugs.

Key words: Flavonoids, minimum inhibitory concentration, minimum bactericidal concentration, minimum fungicidal concentration, total activity, Withania somnifera

The plants are still widely used in ethno medicine around the world. Today, medicinal plants have recently received attention of the pharmaceutical and scientific communities and various publications have documented the therapeutic value of natural compounds in a bid to validate claims of their biological activity. Attention has been drawn to antimicrobial activity of plants and their metabolites due to the challenge of growing incidences of drug resistant pathogens. Some plants have shown the ability to overcome resistance in some organisms and this has led to researches to investigate their mechanisms of action and isolating active compounds [1]. There is a continuous and urgent need to discover new antimicrobial compounds with...