CONTENTS

REVIEW ARTICLES
Recent Trends in Drug-Likeness Prediction: A Comprehensive Review of In Silico Methods
R. U. KADAM AND N. ROY 609-615

Biodegradable Polymers: Which, When and Why?
V. B. KOTWAL, MARIA SAIFEE, NAZMA INAMDAR AND KIRAN BHISE 616-625

RESEARCH PAPERS
Strong Cation Exchange Resin for Improving Physicochemical Properties and Sustaining Release of Ranitidine Hydrochloride
S. KHAN, A. GUHA, P. PRYADZE, AND P. KATARIYA 626-632

Novel Co-Processed Excipients of Mannitol and Microcrystalline Cellulose for Preparing Fast Dissolving Tablets of Glibizide
S. JACOB, A. A. SHIRWAIKAR, A. JOSEPH, K. K. SRINIVASAN 633-639

Formulation and Optimization of Directly Compressible Isosized Modified Release Matrix Tablet
M. C. GOHEL, R. K. PARIKH, M. N. PADSHALA, K. G. SARVAYA AND D. G. JENA 640-645

Effect of Casting Solvent and Polymer on Permeability of Propranolol Hydrochloride Through Membrane Controlled Transdermal Drug Delivery System
T. E. G. K. MURTHY AND V. S. KISHORE 646-650

Preparation of Mucocadhesive Microspheres for Nasal Delivery by Spray Drying
MAHALAXMI RATHANANAND, D. S. KUMAR, A. SHIRWAIRKA, RAVI KUMAR, D. SAMPATH KUMAR AND R. S. PRASAD 651-657

Effect of Polymers on Crystalllo-co-agglomeration of Ibuprofen-Paracetamol: Factorial Design

Synthesis and Antimicrobial Evaluation of Some Novel 2-Imino-3-(4'-carboxamido pyridyl)-5-Arylidene-4-Thiazolidinones and their Brominated Derivatives
P. MISHRA, T. LUKOSE AND S. K. KASHAW 665-668

Measurement of Urine and Plasma Oxalate with Reusable Strip of Amaranthus Leaf Oxalate Oxidase
NISHA SHARMA, MINAKSHI SHARMA, V. KUMAR AND C. S. PUNDIR 669-673

SHORT COMMUNICATIONS
Simultaneous HPLC Estimation of Omeprazole and Domperidone from Tablets
LAKSHMI SIVASUBRAMANIAN AND V. ANILKUMAR 674-676

Isolation and Evaluation of Fenugreek Seed Husk as a Granulating Agent
AMELIA AVACHAT, K. N. GUJAR, V. B. KOTWAL AND SONALI PATIL 676-679

Synthesis and In Vitro Efficacy of some Halogenated Imine Derivatives as Potential Antimicrobial Agents
A. K. HALVE, DEEPTI BHADAJIA, B. BHASKAR, R. DUBEY AND VASUDHA SHARMA 680-682

Simultaneous Spectrophotometric Estimation of Atorvastatin Calcium and Ezetimibe in Tablets
S. S. SONAWANE, A. A. SHIRHDKAR, R. A. FURSULE AND S. J. SURANA 683-684

High Performance Thin-layer Chromatographic Estimation of Lansoprazole and Domperidone in Tablets
J. V. SUSHEE, M. LEKHA AND T. K. RAVI 684-686

Antimicrobial Activity of Helicteres isora Root
S. VENKATESH, K. SAILAXMI, B. MADHAVA REDDY AND MULLANGI RAMESH 687-689

Synthesis and Antibacterial Activity of 2-phenyl-3,5-diphenyl (substituted) -6-aryl-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4-d]thiazoles

Proceedings of the Symposium on Advances in Pulmonary and Nasal Drug Delivery, October 2007, Mumbai

Simultaneous Estimation of Aceclofenac, Paracetamol and Chlorzoxazone in Tablets
G. GARG, SWARNLATA SARAF AND S. SARAF 692-694

Reverse Phase High Performance Liquid Chromatography Method for Estimation of Ezetimibe in Bulk and Pharmaceutical Formulations
S. K. AKAM, LATA KOTHAPALLI, ASHA THOMAS, SUMITRA JANJAM AND A. D. DESHPANDE 695-697

Synthesis and Antiinflammatory Activity of N-Aryl Anthranilic Acid and its Derivatives

RP-HPLC Method for the Determination of Atorvastatin calcium and Nicotinic acid in Combined Tablet Dosage Form
D. A. SHAH, K. K. BHATT, R. S. MEHTA, M. B. SHANKAR AND S. L. BALENDA 700-703

Determination of Etoricoxib in Pharmaceutical Formulations by HPLC Method
H. M. PATEL, B. N. SUHAGIA, S. A. SHAH AND I. S. RATHOD 703-705

Albumin Microspheres of Fluticasone Propionate Inclusion Complexes for Pulmonary Delivery

Design and Development of Thermoreversible Mucoadhesive Microemulsion for Intranasal Delivery of Sumatriptan Succinate
R. S. BHANUSHALI AND A. N. BAJAJ 709-712

Preparation and Characterization of Chitosan Nanoparticles for Nose to Brain Delivery of a Cholinesterase inhibitor BHAVNA, V. SHARMA, M. ALI, S. BABOTA AND J. ALI 712-713

Poloxamer Coated Fluticasone Propionate Microparticles for Pulmonary Delivery; In Vivo Lung Deposition and Efficacy Studies

Sustained Release Budesonide Liposomes: Lung Deposition and Efficacy Evaluation

Generation of Budesonide Microparticles by Spray Drying Technology for Pulmonary Delivery
S. R. NAIKWADE AND A. N. BAJAJ 717-721

Microemulsion of Lamotrigine for Nasal Delivery
A. J. SHENDE, R. R. PATIL AND P. V. DEVARAJAN 721-722

Development of a pMDI Formulation Containing Budesonide
E. ROBINS, G. BROUET AND S. PRIOLKAR 722-724

Development of a pMDI Formulation Containing Salbutamol
E. ROBINS, G. WILLIAMS AND S. PRIOLKAR 724-726

Aqua Triggered In Situ Gelling Microemulsion for Nasal Delivery
R. R. SHELKE AND P. V. DEVARAJAN 726-727

In Vivo Performance of Nasal Spray Pumps in Human Volunteers By SPECT-CT Imaging
S. A. HAZARE, M. D. MENON, P. S. SONI, G. WILLIAMS AND G. BROUET 728-729

Nasal Permeation Enhancement of Sumatriptan Succinate through Nasal Mucosa
S. S. SHIDHAYE, N. S. SAINDAINE, P. V. THAKKAR, S. B. SUTAR AND V. J. KADAM 729-731

Formulation Development of Eucalyptus Oil Microemulsion for Intra nasal Delivery
N. G. TIWARI AND A. N. BAJAJ 731-733
Aqua Triggered In Situ Gelling Microemulsion for Nasal Delivery

R. R. SHEKLE* AND P. V. DEVARAJAN
Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, University of Mumbai, Matunga, Mumbai - 400 019, India

Several mechanisms that lead to in situ gel formation namely, solvent exchange, UV-irradiation, ionic cross-linkage, pH change, and temperature modulation have been reported for design of drug delivery systems. Herewith we have investigated a novel approach Aqua-triggered In Situ (ATIS) gel formation wherein water acts as the trigger for gelling. Zolmitriptan (ZLT) a potent antimigraine agent exhibits low (40%) oral bioavailability1. Nasal drug delivery system of ZLT could provide the dual advantage of enhanced bioavailability with rapid onset of action. The objective of the present work was the design and evaluation of ATIS gel formation in the design of in situ gelling micro emulsion (ME) based nasal sprays of ZLT.

MATERIALS AND METHODS

The chemicals were received as gift from BASF India Ltd., Abitec Corporation, USA, and Zolmitriptan (Cipla India Ltd).

Construction of pseudo ternary phase diagram:
Pseudo-ternary phase diagrams were constructed using water titration method at ambient temperature (25°) to determine the ME regions and gelling regions. PVD-O was selected as oil phase, PVD-S as surfactant and PVD-CoS as co-surfactant. The weight ratios of PVD-S to PVD-CoS were varied from 1:1, 2:1, 3:1 and 4:1, respectively. The ME region and ME gel region were identified.

Preparation of microemulsion for ATIS gel formation:
ZLT and excipient were dissolved in water, surfactant, and co-surfactant mixture and mixed with oil. The concentration of surfactant, co-surfactant and water were fine tuned to obtain sprayable ME which exhibit ATIS gel formation.

Characterization of ATIS gel:
Drug content was monitored by UV spectroscopy at 284 nm. ATIS gelling was determined by spraying the ME using VP 50 spray nozzle on an artificial mucin film supported on a filter paper. The resistance of the sample to flow was monitored by holding the mucin film at 180° facing downwards. The ME (colored with a dye) were sprayed using the Valois VP 50 µl nozzle on white filter paper to assess the spray pattern. The Beckman Coulter N4plus particle size analyzer was used for globule size determination. The effect of pH on ME formulations for ATIS Gel formation was evaluated at different pH (5-7) and SMEDDS as control. Bioadhesion was evaluated by a modified balance method designed in house.

RESULTS AND DISCUSSION

MEs are known to exhibit gel formation under certain conditions2. ATIS gel formulation is based on design of sprayable ME at the phase boundary of the gel region such that further contact with water (aqua) triggered gel formation. Accordingly ZLT loaded ME were prepared by selecting appropriate concentrations of ME components. Pseudo ternary
Microemulsion samples that revealed ATIS gelling when sprayed on artificial mucin film did not drip, while SMEDDS of the same ME formulated without water tends to drip from the mucin film as they did not gel. The globule size of the ATIS gel was in nanometer range. The globule size decreased with increased concentration of surfactant. Good and uniform spray pattern was observed. ATIS gelling was seen to be independent of pH and some ME formulations remained as gel up to 12 h. ATIS gel formulations (G3) showed higher bioadhesion as seen in fig. 3. Aqua-triggered in situ (ATIS) gel formation is an innovative approach in drug delivery. It provides the technological advantage of sprayable DDS which gel in situ and the bioavailability advantage, as the ATIS gels are microemulsion based DDS.

ACKNOWLEDGEMENTS

Authors wish to thank Abitec Corporation USA, BASF India Ltd., Cipla India, Valois India Pvt. Ltd. for kind supply of gift samples.

REFERENCES