produce hypotension when high doses are given initially.

In conclusions, Tweens and Spans enhanced the transdermal permeation of prazosin HCl. The intra group variation among the Spans and Tweens were insignificant. Tweens were found to be better than Spans in the enhancement of permeation of the drug through excised guinea pig skin. Therapeutic levels of the drug could be achieved through transdermal permation.

ACKNOWLEDGEMENT

The authors wish to thank Mr. S. Ravishankar, Asst. Professor, Dept. of Pharmaceutical analysis for his services in carrying out the analysis.

REFERENCES

Bioactive Polymers; Synthesis, Characterisation, Release and Antimicrobial Property of Macromolecular Prodrug of Ampicillin

HIREN PATEL, D.A. RAVAL and MADAMWAR

1Industrial Chemistry Dept., V.P. & R.P.T.P. Science College, Post Graduate-Dept. of Biosciences, Sardar Patel University, Vallabh Vidyanagar - 388 120

Received 10 August 1996
Accepted 14 December 1996

The matrix of poly (methyl methacrylate-co-maleic anhydride) with surface containing functional anhydride group of different percentage was prepared by solution polymerization and characterized. A macromolecular prodrug of ampicillin was synthesized by linking the amino group of ampicillin to anhydride group of matrix via an amide bond. The amount of ampicillin covalently bound to the matrix was spectroscopically characterized and the in vitro release rate in weakly basic medium was established with its antimicrobial biological activity. This prodrug allows a prolonged release (7-8 days) of the drug.

MUCH attention has been lately paid to the preparation and properties of pharmacoogically active polymers 1-6 which can serve as a carrier for low molecular weight drugs to form prodrugs. The controlled slow release of pharmacologically active components in the body can be achieved from prodrugs which can be considered as a special type of drug delivery system from which drug release is

*For correspondence
accomplished by the cleavage of chemical bond. The present study reports the synthesis of macro-molecular produg of ampicillin to anhydride group of matrix of poly(methyl methacrylate-co-maleic anhydride) via amide bond. In vitro release rate, the amount, and the antimicrobial activity of ampicillin covalently bound to the matrix with the surface containing different percentage of anhydride group have been studied.

Methyl methacrylate (inhibitor free) was obtained from G.S.F.C Polymers Unit, Baroda, India. Ampicillin was purchased from Central Drug House, New Delhi. All the chemicals and solvents used were of analytical grade.

The polymeric carrier with average molecular weight (16,700-48,000) was prepared by solution polymerization of methyl methacrylate with maleic anhydride using azo catalyst at 75° in toluene as solvent by a patented method. The copolymer obtained was characterised by measuring intrinsic viscosity, limiting viscosity number in dimethyl formamide (DMF) solution at 25° ± 0.1° as per ASTM-D-2837 using Ubbelohde Viscometer for dilution se-

Fig. 1: I.R. Spectra of (a) methyl methacrylate-co-maleic anhydride (b) ampicillin (c) polymer bound ampicillin

quences. The intrinsic viscosities in DMF were observed to be 0.0179 dl g⁻¹, 0.01654 dl g⁻¹, 0.01649 dl g⁻¹ and 0.0157 dl⁻¹ for PM-MA-1, PM-MA-2, PM-MA-3 and PM-MA-4. The weight average molecular weight (Mw) was determined in dioxane by GPC maxima 820.

Coupling of ampicillin (AMP) to the macro-molecular carrier (1) in the presence of triethyl amine (TEA) is based on the following reaction.

Dimethyl sulfoxide (DMSO) proved to be the most appropriate solvent for the coupling reaction of AMP to MMA-MA copolymer. Coupling reaction was carried out by the following method: 1 g of the polymer matrix (constant in all synthesis) was dissolved in 25 ml anhydrous DMSO with stirring. TEA 0.25 ml was then added and calculated amount of AMP was dissolved in 12.5-13 ml of DMSO and added dropwise at 20-25° into previously prepared solution of methyl methacrylate-co-maleic anhydride. The reaction mixture was stirred for 1 h at 20° and
Table 1
Composition of Poly (methyl methacrylate-co-maleic anhydride) and Release Rate Data at 37°C

<table>
<thead>
<tr>
<th>Polymer System</th>
<th>Moles of MMA : MA in feed Composition</th>
<th>Moles of MMA : MA in copolymer composition</th>
<th>Content of AMP in mg/g of copolymer</th>
<th>Percent Drug (AMP) Release pH - 7.4</th>
<th>pH - 7.6</th>
<th>pH - 7.8</th>
<th>Time in days</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM-MA-1</td>
<td>1 : 0.340</td>
<td>0.789 : 0.214</td>
<td>212.40</td>
<td>51.9</td>
<td>57.3</td>
<td>61.4</td>
<td>8</td>
</tr>
<tr>
<td>PM-MA-2</td>
<td>1 : 1.02</td>
<td>0.602 : 0.402</td>
<td>414.81</td>
<td>61.71</td>
<td>68.46</td>
<td>72.9</td>
<td>8</td>
</tr>
<tr>
<td>PM-MA-3</td>
<td>1 : 1.53</td>
<td>0.550 : 0.456</td>
<td>426.40</td>
<td>64.37</td>
<td>68.8</td>
<td>75.94</td>
<td>8</td>
</tr>
<tr>
<td>PM-MA-4</td>
<td>1 : 3.06</td>
<td>0.512 : 0.469</td>
<td>559.44</td>
<td>71.3</td>
<td>78.0</td>
<td>81.3</td>
<td>6</td>
</tr>
</tbody>
</table>

Abbreviations:
MMA: Methyl methacrylate
MA: Maleic anhydride
PM-MA-1: Poly (methyl methacrylate-co-maleic anhydride) containing 20.30 mole % MA
PM-MA-2: Poly (methyl methacrylate-co-maleic anhydride) containing 40.30 mole % MA
PM-MA-3: Poly (methyl methacrylate-co-maleic anhydride) containing 44.73 mole % MA
PM-MA-4: Poly (methyl methacrylate-co-maleic anhydride) containing 48.60 mole % MA

for variable times, depending on the experimental program at room temperature. On finishing the coupling process, 250 ml cold distilled water with 0.5 ml hydrochloric acid was introduced to precipitate the reaction product. The precipitate was filtered off, washed with two portions of distilled water of 20-25 ml each and dried over calcium chloride.

Adequate conversion was obtained at room temperature in 20 h. The optimum weight ratio of copolymer with biologically active compound (BAC) was found to be 1:0.5 and 1:1. For PM-MA-1-BAC: copolymer = 0.5:1 and for PM-MA-2, PM-MA-3 and PM-MA-4, BAC: copolymer = 1:1. Determination of ampicillin content in the coupling product (Table: 1) was conducted spectroscopically at 558 nm by Fehling’s method

A comparison of IR spectra of ampicillin, the polymer support and coupling product shows the occurrence of reaction. As shown in (Fig: 1). IR spectra of copolymer indicates the anhydride absorption in the region 1850-1780 cm\(^{-1}\). Absorption around 3300-3060 cm\(^{-1}\) (N-H stretching of-CONH), 1680-1630 cm\(^{-1}\) corresponding to amide stretching was observed.

The content of BAC in the polymer was determined spectroscopically, showing characteristic UV absorption at 252 nm since the absorption maximum of the drug has not been shifted when bound covalently. After proper calibration, the carrier MMA-MA does not have absorption in the region around 252 nm and hence it does not interfere with the absorption of the drug components. Similar observations were also made by Pitha et al\(^{12}\), while working on a model drug alprenol bound to polyacrylamide carrier.

On taking a time interval of 4-20 h, the amount of AMP chemically bound increases continuously. Thus one can suppose that with increasing the reaction time, polymeric drug containing increasing amount of chemically bound AMP can be obtained until all functional group of support or acid number becomes minimum\(^{9}\).
ml portion of buffer and the process was repeated. The results are shown in (Table : 1). The release behaviour depends on the kind of polymer system and in every case the amount of drug release decreases gradually with time.

For the purpose of evaluating the release behaviour of AMP from polymer matrix, the hydrolysis of PM-MA-1, PM-MA-2, PM-MA-3, PM-MA-4 was investigated in vitro in various buffers at 37°. The release of AMP in case of PM-MA-4 was 86.6% of the total bound drug within 6 days. On the other hand, the release of AMP is prolonged to 8 days and 84.05%, 81.7% and 66.3% of the total bound drug was released in 8 days in case of PM-MA-3, PM-MA-2 AND PM-MA-1 AT pH 8.0.

The release profiles of ampicillin with different percentage of polymeric carrier were obtained using Escherichia coli, Bacillus subtilis and Staphylococcus aureus. These have been presented in (Fig. 2).

The in vitro drug release was studied spectrophotometrically at 37° by keeping the polymer bound drug in contact with 0.1 M phosphate buffer of pH values 7.4 - 8.0. In a typical experiment, (25 mg) of polymer bound AMP samples were equilibrated with 5 ml of buffer for a fixed interval of time, 24 h. The supernatant was separated by centrifugation (at 3000 rpm) for 10 min. and the amount of AMP released from PM-MA-1, PM-MA-2, PM-MA-3, PM-MA-4 was determined by measuring the absorbance at 558 nm (Fehling’s Test). The residues after centrifugation were again equilibrated with fresh 5
age cumulative release depends upon the amount of anhydride incorporated and pH of the media. Our study provides a concept of providing therapeutic level of active agent in the target site for long duration and permits to manipulate the pharmokinetic behaviour of the drug.

REFERENCES

Studies on Lipids on some varieties of Linseed (Linum usitatissimum) of Vidarbha Region

R.R. KHOTPAL, A.S. KULKARNI AND H.A. BHAKARE
Dept. of Oil and Paint Technology,
Laxminarayan Institute of Technology, Nagpur University, Nagpur - 440 010
Received 9 September 1996
Accepted 7 March 1997

The seeds of C-429, R-552, RLC-4, RLC-6 and T-397 varieties of Linseed, were extracted with chloroform-methanol (2:1, v/v) to yield the total lipids (TL) in 43.9, 46.3, 42.1, 43.5 and 45.2 percent respectively. The TL were fractionated by silicic acid column chromatography into neutral lipids (NL) (87.6-89.6%), glycolipids (GL) (5.8-6.6%) and phospholipids (PL) (3.8-5.8%). The NL, upon being subjected to preparative TLC, were separated into monoacylglycerol, diacylglycerol, triacylglycerol, free fatty acids, sterols, steryl esters and hydrocarbons. The fatty acid composition of all the lipid materials, as determined by GLC, revealed the major fatty acids to be linolenic, linoleic, oleic, stearic and palmitic acids. The fatty acids remained static qualitatively but variability between the lipids and varieties was observed.

Linseed (Linum usitatissimum Linn, Linaceae) is an important rabi crop. In Maharashtra state, it is grown mainly in the Vidarbha region, where it is also used as an edible oil but the presence of cyanogenic glucosides restricts the use of linseed meal.

Vegetable plant lipids have important implications for sensory quality, cell membrane biochemistry and post-harvest physiology\(^1\,^2\).

Fatty acid and lipid composition of different varieties of linseed\(^3\), groundnuts\(^4\) and cottonseeds\(^5\,^6\)