REVIEW ARTICLES

Recent Trends in Drug-Likeness Prediction: A Comprehensive Review of In Silico Methods
R. U. KADAM AND N. ROY
609-615

Biodegradable Polymers: Which, When and Why?
V. B. KOTWAL, MARIA SAIFEE, NAZMA INAMDAR AND KIRAN BHISE
616-625

RESEARCH PAPERS

Strong Cation Exchange Resin for Improving Physicochemical Properties and Sustaining Release of Ranitidine Hydrochloride
S. KHAN, A. GUHA, P. BHATT, AND P. KATARIYA
626-632

Novel Co-Processed Excipients of Mannitol and Microcrystalline Cellulose for Preparing Fast Dissolving Tablets of Glipizide
S. JACOB, A. A. SHIRWAIKAR, A. JOSEPH, K. K. SRINIVASAN
633-639

Formulation and Optimization of Directly Compressible Isosinazerine Modified Release Matrix Tablet
M. C. GOHEL, R. K. PARIKH, N. M. PADSHAHA, K. G. SARVAIYA AND D. G. JENA
640-645

Effect of Casting Solvent and Polymer on Permeability of Propranolol Hydrochloride Through Membrane Controlled Transdermal Drug Delivery System
T. E. G. M. KURTHY AND V. S. KISHORE
646-650

Preparation of Mucoadhesive Microspheres for Nasal Delivery by Spray Drying
MAHALAXMI RATHANANAND, D. S. KUMAR, A. SHIRWAIRKAR, RAVI KUMAR, D. SAMPATH KUMAR AND R. S. PRASAD
651-657

Effect of Polymers on Crystallo-co-agglomeration of Ibuprofen-Paracetamol: Factorial Design
A. PAWAR, A. R. PARADKAR, S. S. KADAM AND R. M. MAHADIK
658-664

Synthesis and Antimicrobial Evaluation of Some Novel 2-Imino-3-(4’-carboxamido pyridyl)-5-Arylidene-4-Thiazolidinones and their Brominated Derivatives
P. MISHRA, T. LUKOSE AND S. K. KASHAW
665-668

Measurement of Urine and Plasma Oxalate with Reusable Strip of Amaranthus Leaf Oxalate Oxidase
NISHA SHARMA, MINAKSHI SHARMA, V. KUMAR AND C. S. PUNDIR
669-673

SHORT COMMUNICATIONS

Simultaneous HPLC Estimation of Omeprazole and Domperidone from Tablets
LAKSHMI SIWASUBRAMANIAN AND V. ANILKUMAR
674-676

Isolation and Evaluation of Fenugreek Seed Husk as a Granulating Agent
AMELIA AVACHAT, K. N. GUJAR, V. B. KOTWAL AND SONALI PATIL
676-679

Synthesis and In Vitro Efficacy of some Halogenated Imine Derivatives as Potential Antimicrobial Agents
A. K. HALVE, DEEPTI BHADAURIA, B. BHASKAR, R. DUBEY AND VASUDHA SHARMA
680-682

Simultaneous Spectrophotometric Estimation of Atorvastatin Calcium and Ezetimibe in Tablets
S. S. SONAWANE, A. A. SHIRHEDKAR, R. A. FURSULE AND S. J. SURANA
683-684

High Performance Thin Layer Chromatographic Estimation of Lansoprazole and Domperidone in Tablets
J. V. SUSHEEL, M. LEKHA AND T. K. RAVI
684-686

Antimicrobial Activity of Helicteres isora Root
S. VENKATESH, K. SAILAXMI, B. MADHAVA REDDY AND MULLANGI RAMESH
687-689

Synthesis and Antibacterial Activity of 2-phenyl-3,5-diphenyl (nsubstituted) -6-aryl-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4-d]thiazoles
689-692

Simultaneous Estimation of Acelofenac, Paracetamol and Chlorzoxazone in Tablets
G. GARG, SWARNALATA SARAF AND S. SARAF
692-694

Reverse Phase High Performance Liquid Chromatography Method for Estimation of Ezetimibe in Bulk and Pharmaceutical Formulations
S. K. AKMAR, LATA KOTHAPALLI, ASHA THOMAS, SUMITRA JANGAM AND A. D. DESHPANDE
695-697

Synthesis and Antiinflammatory Activity of N-Aryl Anthranilic Acid and its Derivatives
J. N. JOSHI, V. R. PATEL, P. K. PATEL, D. RAJ, K. SHAH, RONAK PATEL AND RAJESH PATEL
697-699

RP-HPLC Method for the Determination of Atorvastatin calcium and Nicotinic acid in Combined Tablet Dosage Form
D. A. SHAH, K. K. BHATT, R. S. MEHTA, M. B. SHANKAR AND S. L. BALDANA
700-703

Determination of Etoricoxib in Pharmaceutical Formulations by HPLC Method
H. M. PATEL, B. N. SUHAGIA, S. A. SHAH AND I. S. RATHOD
703-705

Proceedings of the Symposium on Advances in Pulmonary and Nasal Drug Delivery, October 2007, Mumbai

In Silico Methods

Albumin Microspheres of Fluticasone Propionate Inclusion Complexes for Pulmonary Delivery
707-709

Design and Development of Thermoreversible Mucoadhesive Microemulsion for Intranasal Delivery of Sumatriptan Succinate
R. S. BHANUSHALI AND A. N. BAJAJ
709-712

Preparation and Characterization of Chitosan Nanoparticles for Nose to Brain Delivery of a Cholinesterase inhibitor BHAVNA, V. SHARMA, M. ALI, S. BABOOTA AND J. ALI
712-713

Poloxamer Coated Fluticasone Proprionate Microparticles for Pulmonary Delivery: In Vivo Lung Deposition and Efficacy Studies
714-715

Sustained Release Budesonide Liposomes: Lung Deposition and Efficacy Evaluation
716-717

Generation of Budesonide Microparticles by Spray Drying Technology for Pulmonary Delivery
S. R. NAIKWADE AND A. N. BAJAJ
717-721

Microemulsion of Lamotrigine for Nasal Delivery
A. J. SREENI, R. R. PATIL AND P. V. DEVARJAN
721-722

Development of a pMDI Formulation Containing Budesonide
E. ROBINS, G. BROUET AND S. PRIOLKAR
722-724

Development of a pMDI Formulation Containing Salbutamol
E. ROBINS, G. WILLIAMS AND S. PRIOLKAR
724-726

Aqua Triggered In Situ Gelling Microemulsion for Nasal Delivery
R. R. SHELKE AND P. V. DEVARJAN
726-727

In vivo Performance of Nasal Spray Pumps in Human Volunteers By SPECT-CT Imaging
S. A. HAZARE, M. D. MENON, P. S. SONI, G. WILLIAMS AND G. BROUET
728-729

Nasal Permeation Enhancement of Sumatriptan Succinate through Nasal Mucosa
S. S. SHIDHAYE, N. S. SAINDANE, P. V. THAKKAR, S. B. SUTAR AND V. J. KADAM
729-731

Formulation Development of Eucalyptus Oil Microemulsion for through Nasal Mucosa
V. J. KADAM
734-737
penetrate though the nasal mucosa without permeation enhancer but low permeation was observed due to low Log P value of 0.93. When 1% EDTA and 0.1% Tween 80 was used in formulation these was no significant increase in the permeation of sumatriptan succinate when tested by student’s t-test while formulation containing 1% bile salts showed slight increase in the permeation. The permeation was found to increase two times with 1% SLS with enhancement ratio of 1.72.

It may be concluded that nasal mucosa delivery of sumatriptan succinate could be good alternative when formulated in the in situ mucoadhesive gel. This mucoadhesive gel showed satisfactory mucoadhesive strength and gelation temperature. It was found that use of penetration enhancer was required to achieve permeation through nasal mucosa and SLS was found to be the most effective among various penetration enhancers tried.

REFERENCES

Formulation Development of Eucalyptus Oil Microemulsion for Intranasal Delivery

N. G. TIWARI AND A. N. BAJAJ
C. U. Shah College of Pharmacy, S.N.D.T. Women’s University, Jujuh Campus, Santacruz (West), Mumbai - 400 049, India

Migraine headaches appear to be caused by complex interplay of neurologic and vascular changes and show waves of neurologic changes in brain. Essential oils like eucalyptus oil and peppermint oil have been used for aromatherapy for the treatment of migraine. The major active ingredient of eucalyptus oil is cineole (eucalyptol) that has soothing, stimulant and antidepressant effect. Microemulsions have a much greater solubilizing capacity for non-polar organic compounds than aqueous micellar solutions and hence attempts are made to develop microemulsion of eucalyptus oil for intranasal delivery.

MATERIALS AND METHODS

Eucalyptus oil (Vedic Life Sciences, Mumbai), Tween80, Span80 and PEG400 (S. D. Fine Chemicals Ltd. and Merck Ltd.), nasal spray pumps (Valois Pvt. Ltd.)

Formulation development of eucalyptus oil microemulsions: Eucalyptus oil microemulsions were prepared by combining hydrophilic and lipophilic surfactants namely Tween80, Span80 and Cosurfactant PEG400. Glycerin was added in the formulations as it acts as humectant for nasal formulations.

Phase solubility studies and microemulsion formulations: The pseudoternary phase diagrams of oil, surfactant, cosurfactant and water were constructed using water titration method. For solubility studies, the ratio of oil to the surfactant/cosurfactant mixture (S_{mix}) was varied.
from 1:9-9:1 (w/w). Water was added drop wise to the oil-S\textsubscript{mix} mixture under vigorous stirring to form a clear and transparent microemulsion.

Evaluation of optimized microemulsion of eucalyptus oil:
The optimized formulation was evaluated for parameters like clarity, viscosity, pH, particle size and stability. Eucalyptus oil content was determined by HPTLC method (Table 1).

HPTLC method development for analysis of eucalyptus oil in formulations:
Formulation equivalent to 25 mg of eucalyptus oil was accurately weighed and dissolved in 2.5 ml of methanol. The HPTLC scan of eucalyptus oil was developed on Camag Linomat IV using precoated silica gel G254 plates using benzene: ethylacetate (90:10) as mobile phase. The spots were developed with vanillin-cone.sulphuric acid as spraying agent and the plates were scanned at 540 nm. The method was validated for linearity, accuracy and reproducibility.

In vitro diffusion studies:
The optimized formulations were subjected to release kinetic studies through sheep nasal mucosa in phosphate buffer: Tween80 (8.2) for a period of 4 h using Keshary-Chein diffusion apparatus.

Formulation and evaluation of nasal sprays:
The developed formulations were filled in intranasal spray pumps. Three nasal pumps were used namely: VP7/100A CS20 AG+CB-18, VP7D/100+CB19 (Airless), VP6/100 CP20 AG+CB 20A. The nasal spray formulations of eucalyptus oil were evaluated for parameters like spray pattern, shot weight and content of eucalyptus oil per spray (Table 2, fig. 1)

Assessment of efficacy of the formulations:
Blank and eucalyptus oil containing intranasal formulations were inhaled by a panel of human volunteers. The scores were allocated based on

RESULTS AND DISCUSSION
The area of microemulsion existence obtained using Tween80/Span80/PEG400/Water system was used to determine the ratios of S\textsubscript{mix} and oil. Microemulsions developed were clear, with pH of 5.6 and particle size in the range of 300-500 nm and viscosity of 200 cps. The microemulsion was found to be stable on centrifugation at 6000 rpm for 10 min. During freeze thaw cycles no creaming and separation was observed. The in \textit{in vitro} diffusion studies on developed

TABLE 1: EVALUATION OF EUCA LYPTUS OIL MICROEMUL SION

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarity</td>
<td>Clear, transparent</td>
</tr>
<tr>
<td>pH</td>
<td>5.60</td>
</tr>
<tr>
<td>Viscosity (50 rpm)</td>
<td>304.7 cps</td>
</tr>
<tr>
<td>Globule size</td>
<td>355.8 nm</td>
</tr>
<tr>
<td>Stability on centrifugation at 6000 rpm for 10 min</td>
<td>Did not separate into two layers</td>
</tr>
<tr>
<td>Eucalyptus oil content</td>
<td>97.47% w/w</td>
</tr>
</tbody>
</table>

TABLE 2: EVALUATION OF NASAL SPRAY

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray pattern</td>
<td>Spherically uniform</td>
</tr>
<tr>
<td>Shot weight</td>
<td>110 mg</td>
</tr>
<tr>
<td>Uniformity of content per spray</td>
<td>95-105%w/w</td>
</tr>
</tbody>
</table>

Fig. 1: Spray pattern of the formulation
Spray pattern of the formulation delivered through VP6/100 – Uniform spherical (diameter: 12.5 mm)

Fig. 2: In \textit{in vitro} diffusion of optimized nasal formulation on sheep mucosa

soothing, calming and comforting effects of the formulations.
formulations showed a controlled release profile of 88% in 3 h (fig. 2). It was found that nasal spray pump VP6 with capacity of 100 µl gave constant shot weight of 110 mg with spherical and uniform spray pattern with content uniformity per spray to be 95%-105% w/w. The solvent system comprising of benzene: ethylacetate (9:1) was found to give good separation and resolution by HPTLC method. Formulation 2 containing glycerin showed better mucoadhesive properties (fig. 3). The volunteers confirmed the soothing and calming effect of eucalyptus oil intranasal formulations as compared to the blank. Animal studies to quantify the sedative and calming effects of the intranasal formulations by aromatherapy are in progress. The intranasal spray of eucalyptus oil is a cost effective formulation as the excipients used are easily available. It is an efficient formulation, which provides rapid onset of action.

ACKNOWLEDGEMENTS

The authors wish to thank Exmore Chemicals Ltd., Valois India Pvt Ltd. and Vedic Lifesciences Pvt. Ltd for their support.

REFERENCES