Recent trends in drug-likeness prediction: A comprehensive review of in silico methods
R. U. KADAM AND N. ROY
609-615

Biodegradable polymers: Which, when and why?
V. B. KOTWAL, MARIA SAIFEES, NAZMA INAMDAR AND KIRAN BHISE
616-625

Strong cation exchange resin for improving physicochemical properties and sustaining release of ranitidine hydrochloride
S. KHAN, A. GUHA, P. POOBHOTE, AND P. KATARIYA
626-632

Novel co-processed excipients of mannitol and microcrystalline cellulose for preparing fast dissolving tablets of glipizide
S. JACOB, A. A. SHIRWAIKAR, A. JOSEPH, K. K. SRINIVASAN
633-639

Formulation and optimization of directly compressible isoniazid modified release matrix tablet
M. C. GOHEL, R. K. PARIKH, M. N. PADSHALA, K. G. SARAVAIYA AND D. G. JENA
640-645

Effect of casting solvent and polymer on permeability of propranolol hydrochloride through membrane controlled transdermal drug delivery system
T. E. G. K. MURTHY AND V. S. KISHORE
646-650

Preparation of mucoadhesive microspheres for nasal delivery by spray drying
MAHALAXMI RATHANANAND, D. S. KUMAR, A. SHIRWAIR, RAVI KUMAR, D. SAMPATH KUMAR AND R. S. PRASAD
651-657

Effect of polymers on crystalllo-co-agglomeration of ibuprofen-paracetamol: factorial design
A. PAWAR, A. R. PARADKAR, S. S. KADAM AND K. R. MAHADIK
658-664

Synthesis and antimicrobial evaluation of some novel 2-imino-3-(4-carboxamido pyridyl)-5-arylidene-4-thiazolidinones and their brominated derivatives
J. K. JOSHI, V. R. PATEL, K. PATEL, D. RANA, K. SHAH, RONAK PATEL AND RAJESH PATEL
665-671

Properly coated fluticasone propionate microparticles for fluticasone propionate inhalation products
672-675

Preparation and characterization of chitosan nanoparticles for nose to brain delivery of a cholinesterase inhibitor
R. S. BHANUSHALI AND A. N. BAJAJ
676-681

Preparation and characterisation of chitosan nanoparticles for nose to brain delivery of a cholinesterase inhibitor
H. M. PATEL, B. N. SUHAGIA, S. A. SHAH AND I. S. RATHOD
682-687

High performance thin layer chromatographic estimation of lansoprazole and domperidone in tablets
J. V. SUSHEEL, M. LEKHA AND T. K. RAVI
688-694

Antimicrobial activity of Halicteres isora root
S. VENKATESH, K. SAILAXMI, B. MADHAVA REDDY AND MULLANGI RAMESH
687-693

Synthesis and antimicrobial activity of 2-phenyl-3,5-diphenyl (substituted)-6-aryl-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4-d]thiazoles
689-692

Simultaneous estimation of aceclofenac, paracetamol and chlorzoxazone in tablets
G. GARG, SWARNLATA SARAF AND S. SARAF
692-694

Reverse phase high performance liquid chromatography method for estimation of ezetimibe in bulk and pharmaceutical formulations
S. K. AKMAR, LATA KOTHAPALLI, ASHA THOMAS, SUMITRA JANGAM AND A. D. DESHPANDE
695-697

Synthesis and antiinflammatory activity of N-aryl anthranilic acid and its derivatives
J. K. JOSHI, V. R. PATEL, K. PATEL, D. RANA, K. SHAH, RONAK PATEL AND RAJESH PATEL
697-699

RP-HPLC method for the determination of atorvastatin calcium and nicotinic acid in combined tablet dosage form
D. A. SHAH, K. K. BHATT, R. S. MEHTA, M. B. SHANKAR AND S. L. BALDANIA
700-703

Determination of Etoricoxib in pharmaceutical formulations by HPLC method
H. M. PATEL, B. N. SUHAGIA, S. A. SHAH AND I. S. RATHOD
703-705

Proceedings of the symposium on advances in pulmonary and nasal drug delivery, October 2007, Mumbai
Albumin microparticles of fluticasone propionate inclusion complexes for pulmonary delivery
707-709

Design and development of thermoreversible mucoadhesive microemulsion for intranasal delivery of sumatriptan succinate
R. S. BHANUSIALI AND A. N. BAJAJ
709-712

Preparation and characterization of chitosan nanoparticles for nose to brain delivery of a cholinesterase inhibitor
A. J. SHENDE, R. R. PATIL AND P. V. DEVARAJAN
712-713

Poloxamer coated fluticasone propionate microparticles for pulmonary delivery: In vivo lung deposition and efficacy studies
714-715

Sustained release budesonide liposomes: Lung deposition and efficacy evaluation
716-717

Generation of Budesonide microparticles by spray drying technology for pulmonary delivery
S. R. NAIKWADE AND A. N. BAJAJ
717-721

Microemulsion of lamotrigine for nasal delivery
A. J. SHENDE, R. R. PATIL AND P. V. DEVARAJAN
721-722

Development of a PMI formulation containing budesonide
E. ROBINS, G. BROUET AND S. PRIOLKAR
722-724

Development of a PMI formulation containing salbutamol
E. ROBINS, G. WILLIAMS AND S. PRIOLKAR
724-726

Aqua triggered in situ gelling microemulsion for nasal delivery
R. R. SHELKE AND P. V. DEVARAJAN
726-727

In vivo performance of nasal spray pumps in human volunteers by SPECT-CT imaging
S. A. HAZARE, M. D. MENON, P. S. SONI, G. WILLIAMS AND G. BROUET
728-729

Nasal permeation enhancement of sumatriptan succinate through nasal mucosa
S. S. SHIDHAYE, N. S. SAINDANE, P. V. THAKKAR, S. B. SUTAR AND V. J. KADAM
729-731

Formulation development of Eucalyptus oil microemulsion for nasal delivery
N. G. TIWARI AND A. N. BAJAJ
731-733
Twenty tablets were weighed; average weight determined and crushed to fine powder. An accurately weighed sample equivalent to 10 mg of ATV and 10 mg of EZM was transferred to 100 ml volumetric flask; 50 ml of methanol was added and sonicated for 10 min. The solution was filtered through whatman filter paper No. 41 and the volume was made up to 100 ml, using the same solvent. After, appropriate dilutions, absorbances of the sample solutions were recorded, at 235.5 nm and 246.0 nm i.e. $A_1$ and $A_2$, respectively and the concentration of the two drugs in sample solutions ($C_{ATV}$ and $C_{EZM}$) were determined by, using Eqns. 1 and 2. The analysis procedure was repeated, five times, with tablet formulations of two brands; the results of analysis are presented in the Table 1.

The proposed method was found to be simple, accurate, economic and rapid for the routine simultaneous estimation of atorvastatin calcium and ezetimibe in tablet dosage forms. The values of standard deviation and % RSD were found to be <2% indicates the high precision of the method. The results of recovery studies lie between 99-101% indicative of accuracy of the method.

**ACKNOWLEDGEMENTS**

The authors thank the Blue Cross Labs. Ltd. (Nashik), for providing drug samples and R. C. Patel College of Pharmacy, Shirpur, for providing facilities to carry out this work.

**REFERENCES**


---

**TABLE 1: ANALYSIS DATA OF TABLET FORMULATIONS**

<table>
<thead>
<tr>
<th>Brand</th>
<th>Parameters</th>
<th>% label claim*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATV</td>
<td>EZM</td>
</tr>
<tr>
<td>Liponorm EZ</td>
<td>Mean 99.56</td>
<td>100.25</td>
</tr>
<tr>
<td></td>
<td>SD 0.06</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>RSD 0.37</td>
<td>0.23</td>
</tr>
<tr>
<td>TG–tor EZ</td>
<td>Mean 99.50</td>
<td>100.38</td>
</tr>
<tr>
<td></td>
<td>SD 0.04</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>RSD 0.28</td>
<td>0.22</td>
</tr>
</tbody>
</table>

*Values for % label claim are mean of five estimations; SD is standard deviation and RSD is relative standard deviation.
to be 10 and 30 ng/spot, respectively. The limit of quantification for lansoprazole and domperidone were found to be 40 and 65 ng/spot, respectively. The amounts of drug present in the tablet and recovery studies were also carried out. The method was validated for precision, accuracy and reproducibility.

Key words: Lansoprazole, domperidone, high performance thin layer chromatography

Lansoprazole¹ (L), 2-({3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl)methyl} sulfinyl benzimidazole, is used as a gastric proton pump inhibitor. Domperidone¹ (D), 5-chloro-1-{1-[3-(2-oxobenzimidazolin-1-yl)propyl]-4-piperidyl} benzimidazolin-2-one, is a dopamine antagonist and is used as antiemetic and for the treatment of nausea. A combination of these drugs, L (30 mg) and D (30 mg) is available commercially as Lans-Dx. Methods have been reported for the determination of L and D, individually²-¹⁰. However, no high performance thin layer chromatographic (HPTLC) method is reported for the simultaneous determination of these drugs. The present work describes a simple, precise and accurate HPTLC method for simultaneous estimation of L and D in combined dosage forms.

Drugs, L and D were obtained as gift samples from Natco Pharmaceuticals Ltd., Hyderabad, India. All chemicals and reagents used were of analytical grade and purchased from S. D. Fine Chemicals, Mumbai. Instrument used for the analysis was a Camag HPTLC system (with TLC scanner 3, Win CATS Software and Linomat 5 as application device). The samples were spotted in the form of bands of width 6 mm with a Hamilton syringe on precoated silica gel aluminium plate 60 F²⁵⁴ (Machery-Nagel, Germany). The mobile phase consisted of n- butanol:glacial acetic acid:water (9.3: 0.25: 0.5, v/v/v). Linear ascending development of chromatogram was carried out in a Camag twin trough glass chamber saturated with the mobile phase. The chamber saturation time for mobile phase was optimized at 25 min. The length of chromatogram run was 85 mm. Subsequent to development, the TLC plates were dried in a current of air. Densitometric scanning was performed using Camag TLC Scanner 3 in the absorbance mode at 288 nm. The source of radiation utilized was deuterium lamp.

Standard stock solution containing 0.1 mg/ml of L and 0.1 mg/ml of D were prepared by dissolving L and D in methanol. With the fixed chromatographic conditions 1, 2, 3, 4 and 5 µl of standard solution were applied on plate. The plate was developed and scanned as mentioned above. Calibration curves for L and D were generated by plotting peak areas of drugs versus concentration of drugs spotted.

Twenty tablets, each containing quantity equivalent to 10 mg of L and 10 mg of D were weighed; powdered and average weight was calculated. Quantities equivalent to 10 mg of L and 10 mg of D were weighed accurately, transferred to a 100 ml volumetric flask. The drugs were extracted with the addition of little quantities (20 ml) of methanol and volume was made upto 100 ml. This solution was filtered from which suitable aliquots were applied. The plate was developed and scanned as mentioned above (fig. 1). Peak areas were recorded and the amount of L and D present in formulations were estimated using the calibration curve for L and D. Results of analysis of formulation are tabulated in Table 1.

![Fig. 1: Chromatogram of lansoprazole and domperidone](image)

**TABLE 1: ESTIMATION OF LANSOPRAZOLE AND DOMPERIDONE FROM FORMULATION**

<table>
<thead>
<tr>
<th>Drug</th>
<th>Labeled amount (mg/tablet)</th>
<th>Amount found (mg/tablet)</th>
<th>% Label claim</th>
<th>% RSD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lansoprazole</td>
<td>30</td>
<td>29.14</td>
<td>97.13</td>
<td>0.1670</td>
</tr>
<tr>
<td>Domperidone</td>
<td>30</td>
<td>29.46</td>
<td>98.20</td>
<td>0.1380</td>
</tr>
</tbody>
</table>

*Mean and RSD of six observations. Tablets were procured from local market.
The developed method was validated for specificity, precision, and accuracy. The method was found to be specific, since it resolved the peak of L (R_f value= 0.78) and D (R_f value= 0.21) in presence of excipients in the formulations. The linear regression data showed good linear relationship over a concentration range of 100-500 ng/spot for L (r= 0.9990) and 100-500 ng/spot for D (r= 0.9983). The regression equation and validation parameters are given in Table 2.

Precision studies were carried out and the parameters studied were intra-day precision, inter-day precision, repeatability of measurement and repeatability of sample application. Low % RSD values indicate that the developed method has good precision (Table 2).

Stability studies were carried out for the plate and the developed plate was found to be stable for about 2 h. Accuracy of the method was evaluated by carrying out the recovery studies. Recovery studies were carried out at 50 and 100% levels. Good recovery values indicate that the method is free from interference and excipients present in formulation (Table 2).

The developed HPTLC technique is precise, specific and accurate. There was no interference from the excipients used in the tablet formulation and hence this method can be used for routine analysis of L and D in combined dosage form. It may also be extended for simultaneous analysis of L and D in plasma and other biological fluids.

### ACKNOWLEDGEMENTS

The authors acknowledge M/s SNR and Sons Charitable Trust, Coimbatore, India for providing the facilities to carry the experiment, Natco Pharmaceuticals Ltd., Hyderabad, for supplying pure sample of L and D and Tamil Nadu Pharmaceutical Sciences Welfare Trust, Chennai for awarding Scholarship for the work.

### REFERENCES


### TABLE 2: METHOD VALIDATION PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD (ng/spot)</td>
<td>10</td>
</tr>
<tr>
<td>LOQ (ng/spot)</td>
<td>40</td>
</tr>
<tr>
<td>Linearity range (ng/spot)</td>
<td>100-500</td>
</tr>
<tr>
<td>Regression equation (Y= a + bc)</td>
<td></td>
</tr>
<tr>
<td>*Slope (b)</td>
<td>16.221</td>
</tr>
<tr>
<td>*Intercept (a)</td>
<td>690.070</td>
</tr>
<tr>
<td>*Correlation Coefficient (r)</td>
<td>0.9990</td>
</tr>
<tr>
<td>Recovery studies*</td>
<td></td>
</tr>
<tr>
<td>*50% level</td>
<td>98.47</td>
</tr>
<tr>
<td>*100% level</td>
<td>101.35</td>
</tr>
<tr>
<td>Precision (% RSD)</td>
<td></td>
</tr>
<tr>
<td>*Intra-day (n=3)</td>
<td>0.3489</td>
</tr>
<tr>
<td>*Inter-day (n=3)</td>
<td>0.6795</td>
</tr>
<tr>
<td>*Repeatability of sample application (n=6)</td>
<td>0.4640</td>
</tr>
<tr>
<td>*Repeatability of measurement (n=6)</td>
<td>0.2603</td>
</tr>
</tbody>
</table>

*Mean of five replicate samples

---

www.ijpsonline.com