High Performance Thin Layer Chromatographic Method for Simultaneous Estimation of Paracetamol and Valdecoxib in Tablet Dosage Form

M. GANDHIMATHI*, T. K. RAVI, NILIMA SHUKLA AND G. SOWMIYA
Dept. of Pharmaceutical Analysis, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, 395, Sarojini Naidu Street, Coimbatore-641 044, India.

A new simple, sensitive and precise high performance thin layer chromatographic method has been developed for estimation of paracetamol and valdecoxib simultaneously from a combined dosage form. In this method pre coated silica gel 60 GF$_{254}$ TLC plate was used as stationary phase and the chromatogram was developed using chloroform: isopropyl alcohol: glacial acetic acid (9.5:1:0.2 v/v/v) as mobile phase. Paracetamol and valdecoxib showed Rf values 0.14±0.01 and 0.51±0.03, respectively. The plate was scanned and quantified at 250 nm using Camag TLC Scanner. The linear concentration was 2.5 to 12.5 µg/spot for paracetamol and 0.1 to 0.5 µg/spot for valdecoxib. The %RSD of intra day variation was 0.18±0.01 for paracetamol and 0.24±0.01 for valdecoxib. For inter day variation the % RSD was 0.03±0.005 and 0.1±0.02 for paracetamol and valdecoxib, respectively.

Paracetamol$^{1-3}$ is an analgesic and antipyretic. Valdecoxib is a non-steroidal antiinflammatory drug. Both are in combination used in the treatment of severe pain, rheumatoid arthritis and pyrexia. Determination of paracetamol from formulation11 and from biological fluids12 has been reported. Most of the methods were HPLC or UV spectroscopic methods for determination of paracetamol either in individual or in combination with other drugs. Valdecoxib has analytical methods for bioequivalence studies13, metabolite determination$^{14-16}$ and estimation of formulation17. No method was reported for the estimation of paracetamol and valdecoxib in combined dosage form. The present study describes a simple, sensitive and precise HPTLC method for the estimation of paracetamol and valdecoxib from combined dosage form.

Paracetamol and valdecoxib was received as gift samples from Raptakos and Brett Test Laboratories and Glenmark Pharmaceuticals India Ltd, Mumbai, respectively. Silica gel 60 GF$_{254}$ TLC plates (20×10) were used as stationary phase. The combined tablet formulation (500 mg paracetamol and 20 mg valdecoxib) was purchased from a local pharmacy.

A Camag HPTLC System comprising of Camag Linomat V semiautomatic sample applicator, Camag TLC scanner, Camag twin-trough chamber (20×10), Camag CATS software, Hamilton syringe (100 µl), and Shimadzu digital electronic balance BL- 220H were used in the study.

Standards of paracetamol (250 mg) and valdecoxib (10 mg) were weighed accurately and transferred to a 100 ml volumetric flask. This was used as standard stock solution. The drugs were dissolved and diluted up to the mark with ethanol. The tablets containing 500 mg of paracetamol and 20 mg of valdecoxib were weighed and finely powdered. The powder equivalent to 10 mg of valdecoxib and 250 mg of paracetamol was transferred to a 100 ml volumetric flask and dissolved with small portion of ethanol and shaken properly. Then the volume was made with the same and the solution was filtered through Whatmann filter paper.

The chromatographic estimations were performed using pre coated silica gel 60 GF$_{254}$ as stationary phase and mobile phase consisted of chloroform: isopropyl alcohol: glacial acetic acid (9.5:1:0.2 v/v/v). The chamber saturation time was 15 min and the distance of solvent was 82 mm. The detection wavelength was 250 nm.

One to five microlitres of standard stock solution of paracetamol and valdecoxib and aliquot of formulation were spotted on pre coated TLC plates with the help of Linomat V applicator. The plate was developed in 20×10 twin trough chamber up to 82 mm. The plate dried in air after development, scanned with Camag TLC scanner using CATS software incorporating the track optimization option. The amount of paracetamol and valdecoxib present in formulation was estimated by using the calibration curve prepared from standards of paracetamol and valdecoxib. The result of analysis of tablets is shown in Table 1.

*For correspondence
E-mail: gands72@yahoo.co.in
The method was validated by establishing linearity, accuracy, inter day and intra day precision, repeatability of measurement of peak area as well as repeatability of sample application. The limit of detection and limit of quantification were also determined.

The linearity of paracetamol and valdecoxib was found to be in the range of 2.5 to 12.5 µg/spot and 0.1 to 0.5 µg/spot, respectively. The correlation coefficient was 0.9280 and 0.9945, respectively, for paracetamol and valdecoxib. The intra day and inter day precision (%RSD) were determined for standard paracetamol and valdecoxib for 6 times on the same day and different days. The intra day precision (%RSD) were found to be less than 2 for both paracetamol and valdecoxib. These values indicate that the method is precise.

Accuracy of the method was evaluated by calculating recovery of paracetamol and valdecoxib by standard addition method. The percentage recovery was found to be 99.2% and 98.6% for paracetamol and valdecoxib respectively, ensuring that the method is accurate.

Different validation parameters for the proposed HPTLC method for determining paracetamol and valdecoxib content were summarized in Table 2 and chromatogram of paracetamol and valdecoxib after separation is shown in fig.1.

The result obtained was in agreement with the labeled content were summarized in Table 2 and chromatogram of paracetamol and valdecoxib after separation is shown in fig.1.

Table 2: Validation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Paracetamol</th>
<th>Valdecoxib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity range (µg/spot)</td>
<td>2.5-12.5</td>
<td>0.1-0.5</td>
</tr>
<tr>
<td>Correlation coefficient (r)</td>
<td>0.9280</td>
<td>0.9945</td>
</tr>
<tr>
<td>Precision (%) RSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra day</td>
<td>0.18</td>
<td>0.24</td>
</tr>
<tr>
<td>Inter day</td>
<td>0.03</td>
<td>0.109</td>
</tr>
<tr>
<td>Repeatability of sample application (%) RSD</td>
<td>0.470</td>
<td>0.343</td>
</tr>
<tr>
<td>Repeatability of measurement (%) RSD</td>
<td>0.010</td>
<td>0.151</td>
</tr>
<tr>
<td>% Recovery</td>
<td>99.2</td>
<td>98.6</td>
</tr>
<tr>
<td>LOD (ng)</td>
<td>2.5</td>
<td>10</td>
</tr>
<tr>
<td>LOQ (ng)</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig. 1: A typical HPTLC chromatogram of paracetamol and valdecoxib

Rf value of paracetamol is 0.14 and valdecoxib is 0.51

value of paracetamol and valdecoxib in dosage form. The results indicate that the proposed HPTLC method was found to be simple, rapid, precise and accurate for assay of paracetamol and valdecoxib in its formulation.

ACKNOWLEDGEMENTS

The authors thank M/s SNR and sons charitable Trust, Coimbatore for providing facilities to carry out the work.

REFERENCES

1. Indian pharmacopoeia, 4th Edn., The controller of publication, New Delhi, 1996, 554.
15. Werner, U., Werner, D., Hinz, B., Lanbrecht, C. and Brune, K., J.
Two simple and sensitive visible spectrophotometric methods (A and B) have been developed for the quantitative estimation of nitazoxanide, in bulk drug and pharmaceutical dosage forms. Methods were based on the formation of reddish yellow coloured and green coloured chromogens, which were measured at 544 nm and 715 nm, respectively. The results obtained with the proposed methods are in good agreement with the labelled amounts when tablet dosage forms were analysed.

K. V. LAKSHMINARAYANA, Y. N. MANOHARA* AND B. M. GURUPADAYYA
Department of Pharmaceutical Analysis, National College of Pharmacy, Balraj Urs Road, Shimoga-577 201, India.

*For correspondence
E-mail: manoharayn@yahoo.com

Nitazoxanide (I) is chemically, N-(5-nitro-2-thiazoly)salicylamide acetate, which is a new antiprotozoal drug used in the treatment of cryptosporidiosis in immune-compromised patients, including those with AIDS or HIV infection. It has been used in helminth infections. It is not official in any pharmacopoeia and spectrophotometric analytical reports are not found in literature for its quantitative estimation in bulk drug and tablet dosage forms.

Two simple and sensitive visible spectrophotometric methods (A and B) have been developed for the quantitative estimation of nitazoxanide after converting it to its reduced form, N-(5-amino-2-thiazoly)salicylamide acetate, by using zinc dust and 4 N hydrochloric acid in methanol at room temperature.

Method A is based on the oxidation of the reduced nitazoxanide with ferric chloride to form reddish yellow coloured chromogen with the absorption maximum at 544 nm and obeyed Beer’s law in the concentration range of 100-500 µg/ml. Method B is based on the oxidation followed by complex formation reaction of reduced nitazoxanide with potassium ferricyanide in presence of ferric chloride to form green coloured chromogen with absorption maximum at 715 nm and Beer’s law is obeyed in the concentration range of 20-100 µg/ml.

Spectrophotometric parameters are established for the standardization of the methods including statistical analysis of data. These methods have been successfully extended to tablets containing nitazoxanide.

A Shimadzu UV/Vis double beam spectrophotometer (model 1601) with 1 cm matched quartz cells were used for all the spectral measurements. All the chemicals used were of A.R. grade.

About 100 mg of nitazoxanide (pure or equivalent formulations) was accurately weighed and dissolved in 30 ml of methanol. The methanol solution of nitazoxanide was treated with 10 ml of 4 N hydrochloric acid and 1.2 g of zinc dust was added in portions while shaking. After standing for 1 h at room temperature, the solution was filtered through cotton wool. The residue was washed with 10 ml portions of methanol three times and the total volume of the filtrate was made up to 100 ml with methanol (1 mg/ml). The final concentration of the reduced nitazoxanide was brought to 100 µg/ml with methanol.