 REVIEW ARTICLES

A Decision Tree for Rapid Quality Assurance and Control of Ritampicin-Containing Oral Dosage Forms for Global Distribution for Tuberculosis Treatment
Y. ASHOKRAJ, SHRUTIDEV AGRAWAL AND R. PANCHAGNULA 1-4

Transdermal Delivery by Ionophoresis
SWATI RAWAT, SUDHA VENGURLEKAR, B. RAKESH, S. JAIN, G. SRIKARTI 5-10

RESEARCH PAPERS

In vivo Evaluation of Single Dose Tetrabenazine: Toxoid Vaccine Formulation with Chitosan Microspheres
R. MANIVANNAN, S. A. Dhanaraj, Y. UDAYA BHASKARA RAO, A. BALASUBRAMANIYAM, N. L. GOWRISHANKAR, N. JAWAHAR AND S. JUBIE 11-15

Ionic Cross-linked Chitosan Beads for Extended Release of Ciprofloxacin: In vitro Characterization
A. SRINATHA, J. K. PANDIT AND S. SINGH 16-21

Design and Optimization of Diclofenac Sodium Controlled Release Solid Dispersions by Response Surface Methodology
H. N. SHIVAKUMAR, B. G. DESAI AND G. DESHMUKH 22-30

Evaluation of Free Radical Scavenging Activity of an Ayurvedic Formulation, Panchvalkala SHEETAL ANANDJIWALA, M. S. BAGUL, M. PARABIA AND M. RAJANI 31-35

Validation of Different Methods of Preparation of Adhatoda vasica Leaf Juice by Quantification of Total Alkaloids and Vasicine
S. SONI, SHEETAL ANANDJIWALA, G. PATEL AND M. RAJANI 36-42

Formulation and Characterization of Mucoadhesive Buccal Films of Glipizide
MONA SEMALTY, A. SEMALTY AND G. KUMAR 43-48

Synthesis, Antimicrobial and Anti-inflammatory Activity of 2,5-Disubstituted-1,3,4-oxadiazoles
G. NAGALAKSHMI 49-55

Ascorbic Acid Inhibits Development of Tolerance and Dependence to Opiates in Mice: Possible Glutamatergic or Dopaminergic Modulation
S. K. KULKARNI, C. DESHPANDE AND A. DHIR 56-60

Design and In Vitro Characterization of Buccoadhesive Drug Delivery System of Insulin
J. SAINI, S. RAJ, F. J. AHMAD AND R. K. KHAER 61-65

Development and Evaluation of a Chorionphalmic Hypertonic Ophthalmic Solution
A. V. JITHAN, C. KRISHNA MOHAN, AND M. VIMALADEVI 66-70

Optimization of Fast Dissolving Etoricoxib Tablets Prepared by Sublimation Technique
D. M. PATEL AND M. M. PATEL 71-76

Furosemide-loaded Alginate Microspheres Prepared by Ionic Cross-linking Technique: Morphology and Release Characteristics
M. K. DAS AND P. C. SENAPATI 77-84

SHORT COMMUNICATIONS

Isolation of Liver Aldehyde Oxidase Containing Fractions from Different Animals and Determination of Kinetic Parameters for Benzaldehyde
R. S. KADAM AND K. R. IVER 85-88

Microwave-Induced Synthesis of Schiff Bases of Aminothiazolyl Bromocoumarins as Antibacterials
K. N. VENUGOPALA AND B. S. JAYASHREE 89-91

In vitro Antiviral Activity of some Novel Isatin Derivatives against HCV and SARS-CoV Viruses

Physicochemical and Pharmacokinetic Parameters in Drug Selection and Loading for Transdermal Drug Delivery
N. S. CHANDRASHEKAR AND R. H. SHOBHA RANI 94-96

HPLC Estimation of berberine in Tinospora cordifolia and Tinospora sinensis
G. V. SRINIVASAN, K. P. UNNIKRISHNAN, A. B. REMA SHREE AND INDIRA BALACHANDRAN 96-99

Parenteral Formulation of Zopiclone
P. V. SWAMY, P. SUSHMA, G. CHIRAG, K. PRASAD, M. YOUNUS ALI AND S. A. RAJU 99-102

Simultaneous Spectrophotometric Determination of Lansoprazole and Domperidone in Capsule Dosage Form
A. P. SHERVE, A. V. KASTURI, K. N. GUJAR AND P. G. YEOLE 102-105

Novel 2-Pyrroline Derivatives as Potential Antibacterial and Antifungal Agents
SUVARNA KINI AND A. M. GANDHI 105-108

spectrophotometric Estimation of Ethamsylate and Mefenamic Acid from a Binary Mixture by Dual Wavelength and Simultaneous Equation Methods
ANJU GOYAL AND I. SINGH 108-111

Novel Colon Targeted Drug Delivery System Using Natural Polymers
V. RAVI, T. M. PRAMOD KUMAR AND SIDDARAMAIAH 111-113

Effect of Some Clinically Used Proteolytic Enzymes on Inflammation in Rats
A. H. M. VISWANATHA SWAMY AND P. A. PATIL 114-117

Synthesis and Pharmacological Evaluation of (6-Substituted 4-Oxo-4-aminocarbonylacetyl) methyl N-substituted Aminoacetates
ASMITA GAJBHIYE, V. MALLAREDDY AND G. ACHAIH 118-121

Development and In Vitro Evaluation of Buccoadhesive Tablets of Metoprolol Tartrate
P. D. NAKHAT, A. A. KONDAWAR, L. G. RATHI AND P. G. YEOLE 121-124

RP-HPLC Estimation of Venlafaxine Hydrochloride in Tablet Dosage Forms

In vitro Characterization of Buccoadhesive Tablets of Domperidone by UV Spectrophotometric Method
S. LAKSHMANA PRABU, A. SHIRWAIKAR, ANNIE SHIRWAIKAR, R. MANIVANNAN, A. BALASUBRAMANIYAM, N. L. GOWRISHANKAR, N. JAWAHAR AND S. JUBIE 134-135

Effect of Some Clinically Used Proteolytic Enzymes on Inflammation in Rats
A. H. M. VISWANATHA SWAMY AND P. A. PATIL 114-117

Simultaneous Estimation of Esomeprazole and Domperidone by UV Spectrophotometric Method
S. LAKSHMANA PRABU, A. SHIRWAIKAR, ANNIE SHIRWAIKAR, C. DINESH KUMAR, A. JOSEPH AND R. KUMAR 118-121

In Vitro Anthelmintic Activity of Baliospermum montanum Meul. Arg roots
R. G. MALI AND R. R. WADEKAR 131-133

REFEREES FOR INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES DURING 2006 & 2007

124-128

128-131

134-134
ACKNOWLEDGMENTS

We are highly thankful to Prof. B.G. Shivananda, Principal, Al-Ameen College of Pharmacy for his continuous encouragement, Indian Pharmaceutical Association for IPA-IRF scholarship, 3M India and 3M USA for their support in research work.

REFERENCES

HPLC Estimation of berberine in Tinospora cordifolia and Tinospora sinensis

G. V. SRINIVASAN*, K. P. UNNIKRISHNAN, A. B. REMA SHREE AND INDIRA BALACHANDRAN

Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Changuvetty, Kottakkal - 676 503, Kerala, India

Srinivasan, et al.: H PLC Estimation of berberine in Tinospora species

A high-performance liquid chromatographic method for the estimation of berberine in the stem of Tinospora cordifolia (Willd.) Miers. ex Hook.f. and Thoms. and Tinospora sinensis (Lour.) Merrill is described. The dried stems of T. cordifolia and T. sinensis were defatted with petroleum ether (60-80°). The marc was dried and further extracted with methanol. The concentration of berberine in methanol extract was determined using a C-18 reverse phase column with a mobile phase of acetonitrile:water (10:90 v/v) at a flow rate of 0.6 ml/min and with UV detection at 266 nm. TLC and HPLC comparison of both the species revealed significant variation in the chemical constitution of the two species. This observation becomes important in the context of the use of T. sinensis in place of the genuine drug T. cordifolia.

Key words: Tinospora cordifolia, Tinospora sinensis, berberine, HPLC

T. cordifolia (Family: Menispermaceae), known as Amrita (Guduchi) in Sanskrit is a widely used plant in folk and Ayurvedic systems of medicine. The term Amrita meaning divine nectar is attributed to this drug in recognition of its capacity to impart youthfulness, vitality, and longevity to the consumer. Drug consists of the dried stem with bark intact. It is widely used in folk and Ayurvedic systems of medicine for its general tonic, anticancer2, antiulcer2, antipyretic3, antihypertensive3, immunomodulatory6, antioxidant6, hypoglycaemic8, antineoplastic, cardiotonic, antibacterial, antimicrobial, antileishmanial, antiinflammatory, antiarthritic, analgesic and diuretic9,14 properties. The drug is reported to possess 20% of the analgesic effect of sodium salicylate10,12. The plant is used in Ayurvedic Rasayanas to improve the immune system and the body resistance against infections11. Amrita is a constituent of several preparations like Amritarishtam, Dhanvantaram tailam, Cheriya rasnadi kashayam and Valiya marmagulika1. T. sinensis (Fam: Menispermaceae) is used almost in the same way as T. cordifolia12. However, practitioners consider T. cordifolia as the genuine source for Amrita.

Sesquiterpene tinocordifolin15, sesquiterpene glycoside
tinocordifolioside, an immunologically active arabinogalactan, phytoecdysones viz., ecdysterone and makisterone, Alkaloids viz., berberine and magnoflorine are the major chemical compounds isolated from the stem of *T. cordifolia*. Magnoflorine, berberine, tinosporic acid, menispermacide, palmatine, (+)-malabarolide and tinosinen I are the major chemical compounds isolated from the stem of *T. sinensis*.

A reverse phase HPLC method has been developed to quantitatively estimate the berberine content in the stem of *T. cordifolia* and *T. sinensis*. Berberine (*B*₁) is an isoquinoline alkaloid reported to have antimalarial, antipyretic, antimicrobial, antibacterial, antitumour and antiprotozoal (*Leishmania*) activities. An attempt has also been made to chromatographically compare the methanolic extracts of both the species.

The stem of *T. cordifolia* and *T. sinensis* were collected from the Herb Garden, Arya Vaidya Sala, Kottakkal, Kerala State, India in July 2006 and voucher specimens were deposited at the Herbarium, Centre for Medicinal Plants Research, Kottakkal, Kerala (Voucher No. 02202, 01363, 02426, and 03378). The stem was dried in the shade and coarsely powdered. Powdered material of *T. cordifolia* and *T. sinensis* (5 g) were defatted with 100 ml petroleum ether in a Soxhlet extractor for 12 h. The marc was air-dried and was further extracted with 50 ml methanol in a Soxhlet extractor for 12 h at 60°C. The extract was filtered and concentrated to dryness under reduced pressure below 60°C using a rotary flash evaporator. Different concentrations of the residue were prepared in methanol and used for HPLC analysis to quantify the berberine content.

Solvents used were of HPLC grade (E. Merck). Test solutions were filtered through 0.20 μm nylon-6,6 membrane before injection. All analyses were run in triplicate and averaged. The standard berberine used was purchased from Fluka Chemicals, Switzerland. TLC was done on precoated silica gel 60 F₂₅₄ TLC plates (E. Merck) of uniform thickness of 0.2 mm.

A Shimadzu (Kyoto, Japan) HPLC system consisted of LC-10AT VP pump, SPD-M10A VP photodiode array detector, CLASS-VP 6.12 SP5 integration software and a Rheodyne injection valve fitted with a 20 μl injection loop, was used for the analysis. Baseline resolution of *B*₁ was obtained at 25 ± 2°C using a Phenomenex Luna C-18 column (250 × 4.6 mm i.d.; 5 μm) and an isocratic solvent system consisting of acetonitrile-water in the ratio 10:90 (v/v). The mobile phase was passed through 0.45 μm PVDF filter, degassed before use. The flow rate was kept constant at 0.6 ml/min and the detection was at 266 nm. For calibration, standard solutions of *B*₁ were prepared at concentrations of 1, 5, 10, 20, 40, 50, 80, 100, 200, 400, 800 and 1000 μg/ml using methanol as solvent. The standard solution was injected in triplicate and the average detector response was measured. The stem extracts were assayed in triplicate and the peak areas corresponding to *B*₁ were compared with the calibration curve and amount of *B*₁ was determined.

The validated parameters were specificity, linearity, precision and accuracy according to the ICH guidelines. Inter-day reproducibility was verified by analyzing six different concentrations of *B*₁, each injected four times, and determining the relative standard deviation (RSD%). The intra-day reproducibility was evaluated by the analysis of *B*₁ at two different concentrations (80 and 100 μg/ml), four times a day on seven consecutive days and determining the RSD%. For recovery studies, 500 μl of methanol solution containing 100 μg/ml of *B*₁ was added to 500 μl of three methanol extract solutions (10, 20, 40 mg/ml). Recovery was calculated by comparing the resulting peak area with the peak obtained from equal concentrations of *B*₁ and expressed as percentage of this ratio.

Thin layer and HPLC analyses were carried out to compare the crude methanolic extracts of *T. cordifolia* and *T. sinensis*. Thin layer chromatography was performed on precoated silica gel 60 F₂₅₄ TLC plates (E. Merck) of uniform thickness of 0.2 mm. The chromatogram was developed up to 80 mm under chamber saturation conditions with chloroform-methanol, 70:20 (v/v) in a twin trough chamber. For HPLC analysis the conditions mentioned above were maintained.

In view of the potential therapeutic importance of the drug *Amrita*, and considering the degree of adulteration/substitution of the raw materials, a simple HPLC method was developed and validated in order to quantify berberine (*B*₁). Satisfactory retention times and good resolution of *B*₁ was achieved using reverse phase C-18 column eluted with acetonitrile-water.
(10:90 v/v) at a flow rate of 0.6 ml/min. A sharp and symmetric peak for B₁ was obtained, with good baseline resolution and minimal tailing, thus facilitating the accurate measurement of peak area. The HPLC analysis was carried out in isocratic conditions and a retention time of 8.65 min was obtained for standard berberine. Typical HPLC chromatograms of B₁ and methanol extracts of the stem of *T. cordifolia* and *T. sinensis* are shown in figs.1-3.

The calibration curve for B₁ was found to be linear over the range 0.1 to 0.01 mg/ml ($r^2 = 0.98$). The linear regression equation for the calibration curve was $y = 123512x -78787$, where y is the peak area ratio of B₁ and x is the concentration of B₁ (μg/ml). The average recovery was 99.10±0.32%, while the inter-day and intra-day reproducibility were found to be 3.5% and 4.7%, respectively. The concentration of B₁ in the stem of *T. cordifolia* and *T. sinensis* (dry weight basis) was found to be 0.3192% and 0.0967% (w/w), respectively (Table 1).

Comparative chromatographic studies of the methanol extract of the two species revealed the presence of two additional compounds in *T. sinensis*. These two compounds were isolated by column chromatography followed by preparative TLC. HPLC analysis gave peaks at 24.54 and 28.48 min, in the methanol extract of *T. sinensis*. Preliminary studies (UV, FTIR, TLC and derivatisation) indicate that these two compounds possess a steroid nucleus. Detailed characterization studies of these compounds are under progress.

Ayurvedic practitioners of Kerala use both *T. cordifolia* and *T. sinensis* as Amrita. Present study revealed that *T. cordifolia* and *T. sinensis* show differences in chemical constituents. The berberine content of the two species show marked variation, *T. cordifolia* having three times higher berberine concentration. On the other hand *T. sinensis* contain certain compounds that do not occur in *T. cordifolia*. Whether they are of any therapeutic significance is not known and hence need to be investigated. Such chemical variation highlights the need for pharmacological standardization and validation. The analytical conditions presented here are applicable with respect to the identification and quantification

TABLE 1: CONCENTRATION OF BERBERINE IN DIFFERENT SAMPLES

<table>
<thead>
<tr>
<th>Plant drug</th>
<th>Concentration of berberine (%) in the samples a</th>
<th>Average Conc. (%) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. cordifolia</td>
<td>Sample 1: 0.3196</td>
<td>Sample 2: 0.3188</td>
</tr>
<tr>
<td>T. sinensis</td>
<td>0.0965</td>
<td>0.0971</td>
</tr>
</tbody>
</table>

*Methanol extract of the defatted plant drug, *concentration of berberine in the dried plant drugs*
of B₁ and for the quality checking of raw drugs to distinguish the two species conveniently.

ACKNOWLEDGEMENTS

We are grateful to Kerala State Council for Science Technology and Environment (KSCSTE), Govt. of Kerala for providing financial assistance to carry out this work.

REFERENCES