In vitro Adsorption of Pseudoephedrine Hydrochloride onto some Adsorbents and Antacids

MD. AFZAL AZAM*, Y.S.R. REDDY, S. SHASHIDHARAN, B. SURESH & S. SRINIVAS.
J.S.S. College of Pharmacy, Otacamund 643 004, Tamil Nadu.

The adsorption of pseudoephedrine hydrochloride on charcoal, magnesium trisilicate, bismuth carbonate, light magnesium oxide, kaolin and talc was investigated. Maximum adsorption was found with charcoal followed by magnesium trisilicate. Behaviour of charcoal and magnesium trisilicate followed Langmuir and Freundlich isotherms. The present study also reveals that coadministration of pseudoephedrine hydrochloride with the above mentioned adsorbents and antacids is contraindicated.

Adsortion Study

Volumes of 20 ml containing increasing initial concentration of pseudoephedrine hydrochloride in distilled water (100 - 50 mg/100 ml) were prepared in tightly closed conical flasks. In each experiment, 0.5 g of each adsorbent under investigation was added to pseudoephedrine hydrochloride solutions of various concentrations. The flasks were shaken horizontally in a thermostatically controlled water bath (YSI-415 YORCO) at 37° for 2 h. A previous study had shown that the time of maximum adsorption was 1 h. Subsequently, flasks were set aside for further 4 h, to attain equilibrium and then filtered. Aliquots from the filtrate were taken for determination of the amount of free drug spectrophotometrically at 515 μm.

The experiments were performed in duplicate and the results obtained were appropriately treated to construct the adsorption isotherms, Langmuir and Freundlich plots.

Effect of weight of adsorbents

Charcoal, MTS, BC, MC, MO, kaolin and talc were used in these experiments. The conditions of these experiments were the same as described.

Materials and Methods

Materials

Charcoal, magnesium trisilicate (MTS), bismuth carbonate (BC), light magnesium carbonate (MC), light magnesium oxide (MO), kaolin and talc. Pseudoephedrine hydrochloride was comprendial grade and was used without further purification. All the chemicals used were of analytical reagent grade and obtained from various sources - charcoal from E. Merck India Ltd., Bombay; magnesium trisilicate, talc and pseudoephedrine hydrochloride from Ajay Enterprises, Madras; bismuth carbonate and light magnesium oxide from Loba Chem., Bombay; kaolin and light magnesium carbonate from S.D. Fine Chem. Pvt. Ltd., Boisar.

*For Correspondence
Table 1: Langmuir and Freundlich parameters for adsorption of pseudoephedrine hydrochloride on Charcoal, MTS, BC and MO

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Langmuir constants</th>
<th>Freundlich constants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K2</td>
<td>K1</td>
</tr>
<tr>
<td>Charcoal</td>
<td>135.13</td>
<td>0.164</td>
</tr>
<tr>
<td>MTS</td>
<td>111.53</td>
<td>0.006</td>
</tr>
<tr>
<td>BC</td>
<td>21.77</td>
<td>0.015</td>
</tr>
<tr>
<td>MO</td>
<td>38.09</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Table 2: Amount of pseudoephedrine hydrochloride adsorbed (x/m, in mg / g)

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Initial conc. of pseudoephedrine HCl (mg / 100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Charcoal</td>
<td>37</td>
</tr>
<tr>
<td>M.T.S.</td>
<td>13</td>
</tr>
<tr>
<td>B.C.</td>
<td>5</td>
</tr>
<tr>
<td>M.C.</td>
<td>2</td>
</tr>
<tr>
<td>M.O.</td>
<td>6</td>
</tr>
<tr>
<td>Kaolin</td>
<td>15</td>
</tr>
<tr>
<td>Talc</td>
<td>4</td>
</tr>
</tbody>
</table>

above except that a constant initial concentration (250 mg / 100 ml) of pseudoephedrine hydrochloride was added to the variable weights of each adsorbents (100 - 900 mg).

RESULTS AND DISCUSSION

Adsorption isotherms

Amounts of pseudoephedrine hydrochloride in mg per g adsorbent (x/m) were calculated for each adsorbent and plotted against the respective equilibrium concentration (C). Different types of adsorption isotherms were obtained. Adsorption of pseudoephedrine hydrochloride onto charcoal and MTS are type I (Fig. 1 and 2) isotherms where as, MC, BC and talc are type III (Fig. 1 and 2). Adsorption isotherms of MO and kaolin are type II and type V respectively (Fig. 3), (Martin et al.10)

The values of x/m and C were subsequently treated to construct the Langmuir and Freundlich plots according to eq. 1 and 2 respectively:

\[
\frac{C}{x/m} = \frac{1}{k_1 k_2} + \frac{C}{K_2} \quad \cdots \cdots \cdots \cdots \cdots \quad 1
\]

\[
\log(x/m) = \log K - P \log C \quad \cdots \cdots \cdots \cdots \cdots \quad 2
\]

Where \(k_1, k_2, K\) and \(P\) are constants. Only the results of charcoal, magnesium trisilicate and magnesium oxide fitted both equations. Values of Lagmuir constants, \(k_1\) and \(k_2\), and Freundlich constants, \(K\) and \(P\) are summarized in Table 1. Higher values of \(k_1\) and \(k_2\) show that the adsorption capacity of charcoal as well as the force of interaction with
Fig. 1: Adsorption of pseudoephedrine hydrochloride on charcoal. A: adsorption isotherm. B: Langmuir plot.
\[y = 0.4566 + 0.0072x \]

Fig. 2: Adsorption of pseudoephedrine hydrochloride on magnesium trisilicate. A: adsorption isotherm. B: Langmuir plot.
\[y = 1.4656 + 0.00879x \]

Fig. 3: Adsorption isotherms for pseudoephedrine hydrochloride onto different adsorbents, (o) kaolin; (x), talc; (D) bismuth carbonate; (), magnesium oxide; (— —) magnesium carbonate.

Pseudoephedrine hydrochloride are more profound and strong, in comparison with other adsorbents under the same experiments conditions. It is obvious from values of k (Table 1), that the amount of pseudoephedrine hydrochloride adsorbed on charcoal was larger than the corresponding values of other adsorbents. Lower values of P (Table 1) show that with decreasing concentration of pseudoephedrine
Effect of absorbent weight

In this study an initial concentration of Pseudoephedrine hydrochloride (250 mg / 100 ml) was used. Fig. 5 shows the relationship between variation in (x/m) values with amounts of each adsorbent. The values of (x/m) decreased sharply by increasing the weight of adsorbent in the lower range (0.1 - 0.5 g). This step was followed by a moderate drop in (x/m) values at the higher weight range (0.5 - 0.7 g). Above results show that even a small amount of adsorbent effected the adsorption of pseudoephedrine hydrochloride.

REFERENCES