TABLE 2: ANALYSIS OF CARVEDILOL TABLETS

<table>
<thead>
<tr>
<th>Tablet Formulation</th>
<th>Label Claim (mg/tab)</th>
<th>Amount found (mg/tab)</th>
<th>% label claim ±SD</th>
<th>SEM</th>
<th>% Recovery ±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cartoc 25 (Cipla)</td>
<td>25</td>
<td>24.72</td>
<td>99.03±0.14</td>
<td>0.063</td>
<td>99.2±0.15</td>
</tr>
<tr>
<td>Brand B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardivas 25 (Sun)</td>
<td>25</td>
<td>24.78</td>
<td>99.21±0.07</td>
<td>0.033</td>
<td>99.4±0.12</td>
</tr>
</tbody>
</table>

*Average of five determinations

let powder solution containing the equivalent of 25 mg/ml of drug. From the amount of drug found, percentage recovery was calculated.

Carvedilol exhibited maximum absorption at 285 nm and obeyed Beer's law in the concentration range of 4-36 μg/ml. The percentage recovery value between 99.2% and 99.4% (Table 2) indicates that there is no interference of the excipients present in the formulations. The study was made to test ruggedness of the method through an interday and intraday analysis of samples. Results obtained confirmed ruggedness of the method. The developed method was found to be accurate, precise, repeatable, reproducible and stability indicated and can be used for the routine analysis of carvedilol in bulk drug and formulations.

ACKNOWLEDGEMENTS

We thank the Principal, R. C. Patel College of Pharmacy, Shirpur for providing the facilities to carry out the research work.

REFERENCES

7. ICH harmonized Tripartite Guideline, Recommended for Adoption at Step 4 of the ICH Process on 6 November 1996 by the ICH Steering Committee

In Vitro Cytotoxic Studies of Mannich Bases of β-Diketones

R. RAJESH*, A. A. SIDDQUI, G. V. S. RAMASARMA† AND V. ALAGARSAMY‡

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110 062.

‡Department of Medicinal Chemistry, Post Box, 7456, Ole Miss University, Mississippi, MS 38677, USA.

†Department of Pharmaceutical Chemistry, J. S. S. College of Pharmacy, Mysore-570 015.

Accepted 10 April 2005
Revised 3 November 2004
Received 19 February 2004

In vitro cytotoxic activity of some 2-(N-aryl/heteroaryl aminomethyl)-1,3-diphenyl/1-phenyl-3-(3-nitrophenyl)/1-phenyl-3-(pyridin-3-yl)propan-1,3-diones were determined by adopting three methods (Trypan blue dye exclusion, Lowry, MTT, 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazo-

*For correspondence
E-mail: rrajeshm pharm@yahoo.com

May - June 2005 Indian Journal of Pharmaceutical Sciences 359
lium bromide assay) using HEp-2 cell cultures. Among the compounds tested the compound VIII was found to be superior in its cytotoxicity in all the three methods.

β-diketones are considered to be the most important group of dicarbonyl compounds because of their usefulness as versatile intermediates for the synthesis of various heterocycles with different biological activities. Promoted by these findings, and as a continuation of our earlier reported substituted propan-1,3-diones which has shown significant in vitro short term cytotoxicity, we have aimed to study the in vitro cytotoxic activity of a some 2-(N-ary/heteroarylaminoethyl)-1,3-diphenyl/1-phenyl-3-(3-nitrophenyl)/1-phenyl-3-pyridin-3-yl) propan-1,3-diones. The title compounds (fig. 1) were prepared using the methods that were reported earlier from our laboratory.

![Fig. 1: Structures of title compounds](image)

For compound I, R=H, R' and R''=anilino; for compound II R=H, R' and R''=morpholino; for compound III, R=H, R' and R''=(1,3-thiazolin-2-yl)-amino; for compound IV, R=NO₂, R' and R''=anilino; for compound V, R=NO₂, R' and R''=morpholino; for compound VI, R=NO₂, R' and R''=(1,3-thiazolin-2-yl)-amino; for compound VII, R' and R''=anilino; for compound VIII, R' and R''=morpholino and for compound IX, R' and R''=(1,3-thiazolin-2-yl)-amino.

Melting points were determined in open capillary tubes on a Veego VMP-1 melting point apparatus and are uncorrected. UV data were recorded on a Shimadzu UV-spectrophotometer 160-A. IR spectra were recorded in KBr on a Perkin Elmer infra red 1600 spectrophotometer (cm⁻¹), PMR spectra were recorded on a Perkin Elmer EM-390 (90 MHz) instrument.

The title compound 2-[N-(1,3-thiazolin-2-yl)-aminoethyl] 1-phenyl-3-(pyridin-3-yl) propan-1,3-dione (IX) was prepared by dissolving 1-phenyl-3-(pyridin-3-yl)propan-1,3-dione (2.37 g, 0.01 mol), 30% aqueous formaldehyde (0.3 g, 0.012 mol), concentrated HCl (2 ml) and 2-amino-2-thiazoline (1.1 g, 0.012 mol) in methanol (20 ml), the solution was stirred for 1 h at room temperature and refluxed on a water bath for 5 h. The reaction mixture was poured onto crushed ice, with stirring, the resultant solution was neutralized with sodium bicarbonate solution (10%) and the product obtained was filtered, washed thoroughly with cold water, dried and recrystallized from ethyl acetate. Yield: 1.8 g (55%), mp: 225-226°; IR (KBr): 3396 (NH-stretching), 1652, 1670 (C=O stretching), 1590 (NH-bending), 1631 (C=N stretching). UV (λ_max) 267 nm. PMR (DMSO-d6) spectrum exhibited characteristic bands (in δ ppm) at 1.75 (t, 1H, CO-CH=CO), 3.29 (d, 2H, -CH₂), 5.95 (s, 1H, -NH) and 6.50 to 8.50 (m, 13H, Ar-H). Similarly, the compounds I-VIII were prepared. The starting material 1-phenyl-3-(pyridin-3-yl) propan-1,3-dione was synthesized from 2,3-dibromo-1-phenyl-3-(pyridin-3-yl) propan-1-one, as we have reported earlier.

The compounds (I-IX) were investigated for their cytotoxic activity to determine the cytotoxic tolerance of the HEp-2 cell cultures (procured from Pasteur Institute, Coonoor, Tamilnadu) and grown in Eagle’s minimum essential medium (MEM) and CTX₅₀ (concentration producing 50% cytotoxicity) was determined by the following methods.

In the trypan blue dye exclusion method, cell suspension (0.1 ml/well) containing 6x10⁴ cells in MEM was incubated in microtiter plate for 24 h at 37° in a humidified 5% carbon dioxide incubator (ISW, Mumbai). Different concentrations of test compounds (dilutions made with MEM) were added into 96 well plate, then incubated further for 24 h. At the end of 24 h, trypan blue (0.4%) was added and percentage inhibition was calculated and shown in Table 1.

In the determination of cell metabolite functions by protein estimation (Lowry method), cell suspension (0.1ml/well) containing 6x10⁴ cells/ml in MEM was incubated for 24 h at 37° in a humidified carbon dioxide incubator in presence of various concentrations of compounds (dilutions made with MEM) in a 96 well microtiter plates. Total protein content was estimated by precipitating trypsinized cells with ice cold 11% trichloro acetic acid to remove amino acid pool and serum proteins by treating with alkaline cupric sulphate and folin catechaeu phenol reagent after centrifugation. The results are presented in Table 1.

In the MTT assay, the mitochondrial synthesis of the cell was estimated by MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) dye. MTT reacts with succi-
TABLE 1: IN VITRO CYTOTOXIC ACTIVITY OF TEST COMPOUNDS

<table>
<thead>
<tr>
<th>Compound Code</th>
<th>Trypan Blue CTC_{50}</th>
<th>Protein estimation CTC_{50}</th>
<th>MTT assay CTC_{50}</th>
<th>Avg CTC_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1000</td>
<td>803</td>
<td>860</td>
<td>887</td>
</tr>
<tr>
<td>II</td>
<td>909</td>
<td>802</td>
<td>833</td>
<td>848</td>
</tr>
<tr>
<td>III</td>
<td>829</td>
<td>883</td>
<td>803</td>
<td>838</td>
</tr>
<tr>
<td>IV</td>
<td>819</td>
<td>829</td>
<td>791</td>
<td>813</td>
</tr>
<tr>
<td>V</td>
<td>893</td>
<td>703</td>
<td>767</td>
<td>787</td>
</tr>
<tr>
<td>VI</td>
<td>925</td>
<td>815</td>
<td>847</td>
<td>862</td>
</tr>
<tr>
<td>VII</td>
<td>944</td>
<td>714</td>
<td>713</td>
<td>790</td>
</tr>
<tr>
<td>VIII</td>
<td>956</td>
<td>606</td>
<td>662</td>
<td>741</td>
</tr>
<tr>
<td>IX</td>
<td>833</td>
<td>842</td>
<td>804</td>
<td>826</td>
</tr>
</tbody>
</table>

*CTC_{50} is the concentration of the compound in micrograms required to inhibit 50% of cell growth. Avg CTC_{50} is the average CTC_{50} value of all the three methods. Test compounds were dissolved in DMSO. Control indicates the activity of DMSO.

NADH dehydrogenase present in the mitochondria and forms a blue colour formazan compound. This was later dissolved in DMSO and estimated colorimetrically at 540 nm. The results are presented in Table 1.

The results of cytotoxic studies revealed that the test compounds exhibited varying degree of activity (CTC_{50} 741 to 887 µg/ml). The compounds 2-((N-aryl/hetero)aroylamino methyl)-1-phenyl-3-(pyridin-3-yl) propan-1,3-diones (VII–IX) shown better activity (CTC_{50} 741 to 826 µg/ml) than 2-((N-aryl/hetero)aroylamino methyl)-1-phenyl-3-(3-nitrophenyl) propan-1,3-diones (I–VI, CTC_{50} 787 to 887 µg/ml). The compound VIII was found to be the most active molecule (CTC_{50} 741 µg/ml) of this series, hence it could serves as lead molecule for the future studies.

ACKNOWLEDGEMENTS

The authors are grateful to the management J. S. S College of Pharmacy, Ooty and to Faculty of Pharmacy, Hamdard University, New Delhi for providing facilities to carryout this research work.

REFERENCES