CONTENTS

REVIEW ARTICLES

Recent Trends in Drug-Likeness Prediction: A Comprehensive Review of In Silico Methods
R. U. KADAM AND N. ROY 609-615

Biodegradable Polymers: Which, When and Why?
V. B. KOTWAL, MARIA SAFI EEE, NAZAM INAM M AR AND KIRAN BHISE 616-625

RESEARCH PAPERS

Strong Cation Exchange Resin for Improving Physicochemical Properties and Sustaining Release of Ranitidine Hydrochloride
S. KHAN, A. GUHA, P. H. P YAZDE AND P. K. KATARIYA 626-632

Novel Co-Processed Excipients of Mannitol and Microcrystalline Cellulose for Preparing Fast Dissolving Tablets of Glipizide
S. JACOB, A. A. SHIRWAIKAR, A. JOSEPH, K. K. SRINIVASAN 633-639

Formulation and Optimization of Directly Compressible Isosiazid Modified Release Matrix Tablet
M. C. GOHEL, R. K. PARIKH, M. N. PADSHAL A, K. G. SARVAIYA AND D. G. JENA 640-645

Effect of Casting Solvent and Polymer on Permeability of Propanolol Hydrochloride Through Membrane Controlled Transdermal Drug Delivery System
T. E. G. K. MURTHY AND V. S. KISHORE 646-650

Preparation of Mucodrhesive Microspheres for Nasal Delivery by Spray Drying
MAHALAXMI RATHANANAND, D. S. KUMAR, A. SHIRWAIKAR, RAVI KUMAR, D. SAMPATH KUMAR AND R. S. PRASAD 651-657

Effect of Polymers on Crystallo-co-agglomeration of Ibuprofen-Paracetamol: Factorial Design

Synthesis and Antimicrobial Evaluation of Some Novel 2-Imino-3-(4’-carboxamido pyridyl)-5-Arylidene-4-Thiazolidinones and their Brominated Derivatives
P. MISHRA, T. LUKOSE AND S. K. KASHAW 665-668

Measurement of Urine and Plasma Oxalate with Reusable Strip of Amaranthus Leaf Oxalate Oxidase
NISHA SHARMA, MINAKSHI SHARMA, V. KUMAR AND C. S. PUNDIR 669-673

SHORT COMMUNICATIONS

Simultaneous HPLC Estimation of Omeprazole and Domperidone from Tablets
LAKSHMI SIVASUBRAMANIAN AND V. ANILKUMAR 674-676

Isolation and Evaluation of Fenugreek Seed Husk as a Granulating Agent
AMELIA AVACHAT, K. N. GUJAR, V. B. KOTWAL AND SONALI PATIL 676-679

Synthesis and In Vitro Efficacy of some Halogenated Imine Derivatives as Potential Antimicrobial Agents
A. K. HALVE, DEEPTI BHADAURIA, R. DUBEY AND VASUDHA SHARMA 680-682

Simultaneous Spectrophotometric Estimation of Atorvastatin Calcium and Erizetimibe in Tablets
S. S. SONAWANE, A. A. SHIRKHEKAR, R. A. FURSULE AND S. J. SURANA 683-684

High Performance Thin Layer Chromatographic Estimation of Lansoprazole and Domperidone in Tablets
J. V. SUSHEEL, M. LEKHA AND T. K. RAVI 684-686

Antimicrobial Activity of Helicentre Isorrot
S. VENKATESH, K. SAILAXMI, B. MADHAVA REDDY AND MULLANGI RAMESH 687-689

Synthesis and Antibacterial Activity of 2-phenyl-3.5-diphenyl (substituted) -6-aryl-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4-d]thiazoles

Simultaneous Estimation of Aceclofenac, Paracetamol and Chlorzoxazone in Tablets
G. GARG, SWARNALATA SARAF AND S. SARAF 692-694

Reverse Phase High Performance Liquid Chromatography Method for Estimation of Eterzimibe in Bulk and Pharmaceutical Formulations
S. K. AKAM, LATA KOTHAPALLI, ASHA THOMAS, SUMITRA JANGAM AND A. D. DESHPANDE 695-697

Synthesis and Antiinflammatory Activity of N-Aryl Anthranilic Acid and its Derivatives

RP-HPLC Method for the Determination of Atorvastatin calcium and Nicotinic acid in Combined Tablet Dosage Form
D. A. SHAH, K. K. BHATT, R. S. MEHTA, M. B. SHANKAR AND S. L. BALDANIA 700-703

Determination of Etoricoxib in Pharmaceutical Formulations by HPLC Method
H. M. PATEL, B. N. SUHAGIA, S. A. SHAH AND I. S. RATHOD 703-705

Proceedings of the Symposium on Advances in Pulmonary and Nasal Drug Delivery, October 2007, Mumbai

Albumin Microspheres of Fluticasone Proprionate Inclusion Complexes for Pulmonary Delivery

Design and Development of Thermoreversible Mucoadhesive Microemulsion for Intranasal Delivery of Sumatriptan Succinate
R. S. BHANUSHALI AND A. N. BAJAJ 709-712

Preparation and Characterization of Chitosan Nanoparticles for Nose to Brain Delivery of a Cholinesterase inhibitor
BHAWNA, V. SHARMA, M. ALI, S. BABOTA AND J. ALI 712-713

Poloxamer Coated Fluticasone Propionate Microparticles for Pulmonary Delivery: In Vivo Lung Deposition and Efficacy Studies

Sustained Release Budesonide Liposomes: Lung Deposition and Efficacy Evaluation

Generation of Budesonide Microparticles by Spray Drying Technology for Pulmonary Delivery
S. R. NAIKWADE AND A. N. BAJAJ 717-721

Microemulsion of Lamotrigine for Nasal Delivery
A. J. SHENDE, R. R. PATIL AND P. V. DEVARAJAN 721-722

Development of a pMDI Formulation Containing Budesonide
E. ROBINS, G. BROUET AND S. PRIOLKAR 722-724

Development of a pMDI Formulation Containing Salbutamol
E. ROBINS, G. WILLIAMS AND S. PRIOLKAR 724-726

Aqua Triggered In Situ Gelling Microemulsion for Nasal Delivery
R. R. SHELKE AND P. V. DEVARAJAN 726-727

In vivo Performance of Nasal Spray Pumps in Human Volunteers By SPECT-CT Imaging
S. A. HAZARE, M. D. MENON, P. S. SONI, G. WILLIAMS AND G. BROUET 728-729

Nasal Permeation Enhancement of Sumatriptan Succinate through Nasal Mucosa
S. S. SHIDHAYE, N. S. SAINDANE, P. V. THAKKAR, S. B. SUTAR AND V. J. KADAM 729-731

Formulation Development of Eucalyptus Oil Microemulsion for Intranasal Delivery
N. G. TIWARI AND A. N. BAJAJ 731-733
The resolution factor was found to be 6.55, which indicated that there is good resolution between omeprazole and domperidone. This method is highly sensitive to estimate omeprazole and domperidone in tablet formulations.

The statistical parameters in method validation studies for precision, accuracy, specificity, stability of analytical solutions and ruggedness were justified the validity of the proposed method. The results of the assay and method validation studies given in Tables 1 and 2 have shown that the method is simple, accurate and precise and non-interference from tablet excipients.

ACKNOWLEDGEMENTS

The authors are thankful to CEAL Labs, Chennai for providing facilities.

REFERENCES

the parameters of comparative studies. Fenugreek husk dispersion was found to be superior over starch paste, on the basis of the selected parameters. The maximum concentration required of the husk as a binding agent was 4 -5% of the dosage form, which is relatively low as compared to starch.

Key words: Fenugreek husk, swelling index, granulating agent, tablets

The plant, *Trigonella-foenum graecum* Linn. (Leguminosae) is an aromatic annual herb. Various parts of fenugreek, mainly its leaves and seeds have been widely used in the Indian food. It has several cosmetic and medicinal uses like gastroproctective, antiurolithiatic, hypoglycemic, diuretic, anti dandruff agent, antiinflammatory agent and as antioxidant. Mucilage of various seeds has been used as granulating and binding agent due to its non-toxicity, low cost, free availability, emollient and non irritating nature. Isolation of mucilage from fenugreek seeds has been reported, but is a tedious and time-consuming process. Reported methods have isolated its mucilage from the seeds by maceration using water followed by precipitation. In the present study an economically viable and a simple method for the separation of husk from fenugreek seeds was developed. Looking at the ability of the husk to form a mucilage, the possibility of using it as a binding/granulating agent and release retardant material in solid dosage forms was also explored.

Fenugreek seeds were procured from Yucca Enterprises, paracetamol and diclofenac sodium were obtained as gift samples from Sunij Pharmaceuticals, Ahmedabad. All other chemicals and solvents were of analytical reagent grade.

For isolation of husk, seeds of *Trigonella-foenum graecum* were initially size reduced to 1000–1500 µ using a Hammer mill. These were then treated with various chlorinated hydrocarbons like chloroform, carbon tetrachloride, methylene chloride and other organic solvents. It was observed that chloroform and methylene chloride are better solvents and were used for experimental work. These crushed seeds were soaked in chloroform for 15 min. By decantation the crushed seeds were separated into husk and core that contains oily portion. Successive extractions with chloroform removed the traces of oily portion and core. The separated husk was air dried and subjected to size reduction by using Hammer mill to 180-250 µ. The milled material was passed through 60 # sieve to get the husk of particle size less than 250 µ. Size reduction was done to increase the surface area and swelling capacity.

The husk powder was evaluated for Swelling index, flow properties and particle size distribution. The swelling index is the volume in milliliter occupied by 1 g of a material, including any adhering mucilage, after it has swollen in aqueous liquid for 4 h.

One gram of powder was placed in a 25 ml ground-glass-stoppered cylinder graduated over a height of about 120 to 134 mm in 5 ml divisions. The powder was moistened with 1 ml of ethanol (96%), water was added up to 25 ml and the cylinder was closed. It was shaken vigorously every 10 min for 1 hour and then allowed to stand for 3 h. The volume occupied by the powder was measured, including any adhering mucilage. Three tests were carried out at the same time. Swelling index was calculated from the mean of the three tests. The dried and powdered fenugreek husk was also characterized and evaluated for various physicochemical properties such as Angle of repose, Carr’s compressibility index and Particle size distribution (Tables 1 and 2).

Paracetamol and diclofenac sodium were used as model drugs for evaluating fenugreek husk powder as binder (Table 3). Binder solution was prepared by hydrating the given amount of fenugreek husk powder in minimum quantity of water for 15 min to form a paste-like mass (dispersion). Granules of both drugs were prepared by wet granulation method using fenugreek husk paste and were compared against granules prepared by using starch paste as a standard binding agent. Other excipients like lactose, magnesium stearate, talc and aerosil were added as diluent and lubricants, respectively. The prepared granules were evaluated for particle size distribution and flow properties like angle of repose and Carr’s compressibility index (Tables 1 and 2).

The tablets were compressed using 6-station rotary
tablet machine, using 12.5 mm flat-faced beveled edge punches for paracetamol tablets. Diclofenac sodium tablets were compressed using 8 mm flat-faced beveled edge punches. The tablets were evaluated for various standard parameters (Table 4).

Chloroform and methylene chloride proved to be better solvents for the separation of husk from the crushed seeds. Successive extractions produced higher yields. The yield of husk obtained from the seeds was around 40% w/w. Swelling capacity of the studied material and viscosity building ability of husk was favorable for it to be a good candidate as a granulating agent.

TABLE 1: PHYSICOCHEMICAL PROPERTIES OF FENUGREEK HUSK POWDER, PARACETAMOL AND DICLOFENAC SODIUM GRANULES

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Fenugreek husk powder</th>
<th>Paracetamol granules</th>
<th>Diclofenac Sodium granules</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fenugreek Husk</td>
<td>Starch</td>
</tr>
<tr>
<td>Angle of Repose</td>
<td>21.3°</td>
<td>20.35°</td>
<td>35.22°</td>
</tr>
<tr>
<td>Density: Tapped (g/cc)</td>
<td>0.886</td>
<td>0.68 g/cc</td>
<td>0.52 g/cc</td>
</tr>
<tr>
<td></td>
<td>0.806</td>
<td>0.75 g/cc</td>
<td>0.62 g/cc</td>
</tr>
<tr>
<td>Carr’s compressibility index</td>
<td>9.029%</td>
<td>9.37%</td>
<td>16.10%</td>
</tr>
<tr>
<td>Swelling index (ml)</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2: SIEVE ANALYSIS OF FENUGREEK HUSK POWDER, PARACETAMOL AND DICLOFENAC SODIUM GRANULES

<table>
<thead>
<tr>
<th>Sieve no.</th>
<th>Fenugreek husk powder</th>
<th>% Weight retained</th>
<th>Paracetamol granules</th>
<th>Diclofenac Sodium granules</th>
</tr>
</thead>
<tbody>
<tr>
<td>12°</td>
<td>--</td>
<td>--</td>
<td>1.63</td>
<td>20.10</td>
</tr>
<tr>
<td>25°</td>
<td>--</td>
<td>27.85</td>
<td>22.10</td>
<td>46.43</td>
</tr>
<tr>
<td>60°</td>
<td>--</td>
<td>51.21</td>
<td>60.8</td>
<td>39.13</td>
</tr>
<tr>
<td>85°</td>
<td>47.8</td>
<td>6.45</td>
<td>6.8</td>
<td>5.65</td>
</tr>
<tr>
<td>100°</td>
<td>32.2</td>
<td>5.71</td>
<td>5.8</td>
<td>3.26</td>
</tr>
<tr>
<td>120°</td>
<td>12.7</td>
<td>2.7</td>
<td>0.8</td>
<td>0.54</td>
</tr>
<tr>
<td>Below 120°</td>
<td>7.3</td>
<td>6.08</td>
<td>3.7</td>
<td>3.36</td>
</tr>
</tbody>
</table>

*indicates the sieve used for evaluation

TABLE 3: FORMULATION OF PARACETAMOL AND DICLOFENAC SODIUM TABLETS

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>A (mg)</th>
<th>B (mg)</th>
<th>Ingredients</th>
<th>A (mg)</th>
<th>B (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracetamol</td>
<td>500</td>
<td>500</td>
<td>Diclofenac Sodium</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Starch (diluent)</td>
<td>53</td>
<td>23</td>
<td>Fenugreek husk paste</td>
<td>8</td>
<td>--</td>
</tr>
<tr>
<td>Starch for paste</td>
<td>--</td>
<td>60</td>
<td>Starch for paste</td>
<td>--</td>
<td>16</td>
</tr>
<tr>
<td>Fenugreek husk paste</td>
<td>30</td>
<td>--</td>
<td>Lactose</td>
<td>46</td>
<td>38</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>4</td>
<td>4</td>
<td>Magnesium stearate</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Talc</td>
<td>8</td>
<td>8</td>
<td>Talc</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Aerosil 200</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total weight per tablet</td>
<td>600</td>
<td>600</td>
<td></td>
<td>160</td>
<td>160</td>
</tr>
</tbody>
</table>

Formulation A - granulated using fenugreek husk paste, Formulation B - granulated using starch paste

TABLE 4: PROPERTIES OF TABLETS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Paracetamol tablets</th>
<th>Diclofenac Sodium tablets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fenugreek husk</td>
<td>Starch</td>
</tr>
<tr>
<td>Weight / tab (mg)</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Diameter (mm)</td>
<td>12.6</td>
<td>12.6</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>4.5</td>
<td>4.3</td>
</tr>
<tr>
<td>Hardness (kg/cm²)</td>
<td>6.7</td>
<td>5</td>
</tr>
<tr>
<td>Friability (%)</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Disintegration time (min)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Weight variation</td>
<td>Passes</td>
<td>Passes</td>
</tr>
<tr>
<td>Ave % dissolution in 30 min</td>
<td>86.5</td>
<td>90.3</td>
</tr>
</tbody>
</table>

(50 rpm) using App-1

The granules prepared using the husk powder were comparable in various physical properties to those prepared using starch paste as a binder. The advantage of fenugreek husk over starch as a binding agent was that it could be used as a cold binder whereas starch has to be heated.

The tablets prepared with 5% of fenugreek husk showed more hardness as compared to those prepared with starch paste. These tablets also showed better properties in terms of friability and disintegration time specifically in case of paracetamol tablets, because capping is a problem frequently observed during high-speed compaction and further processing of paracetamol tablets. Comparable properties in diclofenac sodium tablets were also observed as compared to those made using starch paste. These properties were observed at a relatively much lower concentration of the binder as can be seen from the formula (Table 3).

The disintegration and dissolution time of both the tablets was comparable to the tablets prepared with starch paste as a binder which indicates that fenugreek husk is a better binder for paracetamol tablets since it has minimized the capping tendency without adversely affecting the properties which are crucial for therapeutic efficacy.

Fenugreek husk can easily be separated and subsequently powdered from the seeds by simple techniques. The particles can be easily hydrated and dispersed in water at room temperature in a very short time. The granules prepared of the suitable drugs with relatively lower proportion of the fenugreek husk paste (dispersion) as compared to traditional starch paste had better flow and compressibility. The compressed tablets complied with quality parameters as per official specifications.

Thus the aqueous dispersion of fenugreek husk was found to be a better granulating agent, being food article, devoid of toxicity and economic too, along with an ability to give desired attributes to the dosage form. Fenugreek husk studies are further going to explore its role in drug delivery systems including its release retardant properties and mucoadhesive nature.

ACKNOWLEDGEMENTS

The authors are thankful to Sinhgad College of Pharmacy for providing the facilities for carrying out the research project.

REFERENCES