Simultaneous Estimation of Aceclofenac, Paracetamol and Moxizhome in Tablets
G. GARG, SWARNALATA SARAF AND S. SARAF 692-694
Reverse Phase High Performance Liquid Chromatography Method for Estimation of Ezetimibe in Bulk and Pharmaceutical Formulations
S. K. AKMAR, LATA KOTHAPALLI, ASHA THOMAS, SUMITRA JANGAM AND A. D. DESHPANDE 695-697
Synthesis and Antiinflammatory Activity of N-Aryl Anthranilic Acid and its Derivatives
RP-HPLC Method for the Determination of Atorvastatin calcium and Nicotinic acid in Combined Tablet Dosage Form
D. A. SHAH, K. K. BHATT, R. S. MEHTA, M. B. SHANKAR AND S. L. BALDANA 700-703
Determination of Etoricoxib in Pharmaceutical Formulations by HPLC Method
H. M. PATEL, B. N. SUHAGIA, S. A. SHAH AND I. S. RATHOD 703-705

Proceedings of the Symposium on Advances in Pulmonary and Nasal Drug Delivery, October 2007, Mumbai

Albumin Microspheres of Fluticasone Propionate Inclusion Complexes for Pulmonary Delivery
Design and Development of Thermoreversible Mucoadhesive Microemulsion for Intranasal Delivery of Sumatriptan Succinate
R. S. BHANUSHALI AND A. N. BAJAJ 709-712
Preparation and Characterization of Chitosan Nanoparticles for Nose to Brain Delivery of a Cholinesterase inhibitor BHAVNA, V. SHARMA, M. ALI, S. BABOOTA AND J. ALI 712-713
Poloxamer Coated Fluticasone Propanoate Microparticles for Pulmonary Delivery; In Vivo Lung Deposition and Efficacy Studies
Sustained Release Budesonide Liposomes: Lung Deposition and Efficacy Evaluation
Generation of Budesonide Microparticles by Spray Drying Technology for Pulmonary Delivery
S. R. NAIKWADE AND A. N. BAJAJ 717-721
Microemulsion of Lamotrigine for Nasal Delivery
A. J. SHENDE, R. R. PATIL AND P. V. DEVARAJAN 721-722
Development of a pMDI Formulation Containing Budesonide
E. ROBINS, G. BROUET AND S. PRIOLKAR 722-724
Development of a pMDI Formulation Containing Salbutamol
E. ROBINS, G. WILLIAMS AND S. PRIOLKAR 724-726
Aqua Triggered In Situ Gelling Microemulsion for Nasal Delivery
R. R. SHELKE AND P. V. DEVARAJAN 726-727
In vivo Performance of Nasal Spray Pumps in Human Volunteers By SPECT-CT Imaging
S. A. HAZARE, M. D. MENON, P. S. SONI, G. WILLIAMS AND G. BROUET 728-729
Nasal Permeation Enhancement of Sumatriptan Succinate through Nasal Mucosa
S. S. SHIDHAYE, N. S. SAINDANE, P. V. THAKKAR, S. B. SUTAR AND J. J. PARMAR 729-731
Formulation Development of Eucalyptus Oil Microemulsion for Intranasal Delivery
N. G. TIWARI AND A. N. BAJAJ 731-733
Epilepsy is a neurological disorder which requires quick management of seizures in order to avoid the risk of permanent brain damage. Intranasal administration allows transport of drugs to the brain circumventing BBB, thus providing a unique feature and better option to target drugs (for example lamotrigine) to the brain with quick onset of action in case of emergencies such as epilepsy. We have already reported microemulsion (ME) of lamotrigine for nasal delivery1. Further, previous studies on ME of tamoxifen citrate (hydrophobic drug) have demonstrated a dramatic increase in solubility with micellar and ME despite poor solubility of drug in oily phase2. This finding can be utilized in formulation of nasal ME of hydrophobic drugs. Improved solubilization by virtue of ME can exploited to accommodate higher drug concentration per unit nasal ME as nasal anatomy pose severe constraints on volume of formulation to be administered. This can aid reduction of dosage volume of nasal ME ultimately resulting in high patient compliance. The objective of present study was to evaluate the role of ME components in solubilization of lamotrigine. Ascertaining the role of ME components would create better understanding of the system for further formulation development.

MATERIALS AND METHODS

Formulation components are listed in Table 1 with equilibrium solubility data. ME and micelles (MI) were formulated using surfactant - cosurfactant mixtures, Solutol HS 15 and Transcutol P in the ratio of 1:2 and Solutol HS 15: soluphor P in the ratio of 1:1, with and without oil phases, respectively. Solubilization by ME and MI was determined by adding excess of lamotrigine and concentration of solubilized drug was determined by UV spectrophotometry (307 nm) after 48 h of equilibration.

RESULT AND DISCUSSION

The observed solubilization capacity of ME and MI systems was much lower than the predicted solubility calculated from the summation of contribution of each component of the system (Table 2). Furthermore the improvement in solubilization capacity of ME over MI was not high in relation to the equilibrium solubility data for lamotrigine in the three oil phases. Also the solubilization capacity of the ME did not increase with

<table>
<thead>
<tr>
<th>Formulation components (mg/ml ± SE)</th>
<th>Lamotrigine solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oily phases</td>
<td></td>
</tr>
<tr>
<td>Capmul MCM</td>
<td>45.13 ± 0.1821</td>
</tr>
<tr>
<td>Pecoil</td>
<td>18.04 ± 0.3564</td>
</tr>
<tr>
<td>Captex 355</td>
<td>0.93 ± 0.1245</td>
</tr>
<tr>
<td>Surfactant</td>
<td></td>
</tr>
<tr>
<td>Solutol HS 15</td>
<td>67.06 ± 0.7189</td>
</tr>
<tr>
<td>Transcutol P</td>
<td>133.39 ± 0.7726</td>
</tr>
<tr>
<td>Co surfactants</td>
<td></td>
</tr>
<tr>
<td>Soluphor P</td>
<td>14.36 ± 0.3834</td>
</tr>
<tr>
<td>Aqueous phase</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>0.17 ± 0.678</td>
</tr>
</tbody>
</table>

TABLE 1: FORMULATION COMPONENTS AND EQUILIBRIUM SOLUBILITY OF LAMOTRIGINE

<table>
<thead>
<tr>
<th>Oil phase</th>
<th>Concentration of oily phase (% w/w)</th>
<th>Solubility (mg/ml Predicted)</th>
<th>Solubilization (mg/ml±SE) capacity observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capmul MCM</td>
<td>3.5</td>
<td>68.32</td>
<td>34.01±0.034</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>70.67</td>
<td>34.07±0.959</td>
</tr>
<tr>
<td>Pecoil</td>
<td>3.5</td>
<td>67.38</td>
<td>29.87±0.685</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>68.1</td>
<td>30.02±0.155</td>
</tr>
<tr>
<td>Captex 355</td>
<td>3.5</td>
<td>66.78</td>
<td>28.57±0.1619</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>66.79</td>
<td>28.55±0.448</td>
</tr>
<tr>
<td>Micelles</td>
<td>-</td>
<td>66.75</td>
<td>26.33±0.125</td>
</tr>
</tbody>
</table>

*For correspondence
E-mail: pvdevarajan@gmail.com
increase in concentration of the oil phase irrespective of solubility in oil.

Solubilization capacity of ME of lamotrigine was significantly lower than predicted. Moreover no appreciable difference was seen in solubilization capacity of MI and ME formulation. This observation, though contrary to our previous study with tamoxifen, where marked increase in solubilization was observed, was in accordance with reports on steroid ME. Though the oil phase is known to play a significant role in generation of the interface it may not always play a major role in drug solubilization. Moreover, cosurfactants may affect the micelle structure thereby causing significant reduction in solubilization by MI and ME despite high solubility of drug in cosurfactant. The decreased solubilization of lamotrigine by ME compared to the predicted could be due to interaction of the drug with ME components. This however needs to be explored and confirmed. However adequate solubilization was observed to enable design of ME [5 mg lamotrigine per actuation (100 µl)] for nasal delivery.

ACKNOWLEDGEMENTS

Authors wish to thank UGC- GOI for Junior Research Fellowship to Ms. Shende and Abitec Corporation, BASF India Ltd., Gattefossé-Colorcon Asia, and RPG Life Sciences for supply of gift samples.

REFERENCES

Development of a pMDI Formulation Containing Budesonide

E. ROBINS*, G. BROUET AND S. PRIOLKAR
Direction Technique, Valois SAS, Route des Falaises, 27100 Le Vaudreuil, France

A hydrofluoroalkane (HFA) based budesonide formulation was developed so that 220 µg of budesonide per shot would exit the valve over 200 doses. This formulation was designed to be physically and chemically stable and it would give reproducible aerosol performances. The stability of the resulting metered dose inhaler was also evaluated under accelerated storage conditions (40°/75%RH) up to 6 mo. The aim was also to match the innovator Pulmicort® CFC (chlorofluorocarbon) product in terms of in vitro performances.

MATERIALS AND METHODS

Excipients selected for evaluation were polyethylene glycol 300 (at levels of 0.15 to 5% w/w, supplied by Fluka, France) and ethanol (at levels of 0.2 to 2% w/w, supplied by Prolabo, France). The amount of micronised budesonide (supplied by Aarti Healthcare Ltd, India) introduced into the formulation vessel was such that the appropriate dose of budesonide would be delivered to the patient. Pressurised metered dose inhalers (pMDIs) were prepared by introducing the HFA budesonide suspension formulation as a one step filling process, through a metering valve previously crimped onto a standard anodised aluminium canister (supplied by Presspart, Great-Britain).

To evaluate the homogeneity of the dispersion by visual inspection, formulations were filled into glass bottles. Promising formulations were evaluated with regard to drug stability upon storage, delivered dose uniformity (DDU) over 10 actuations at 28.3 l/min and particle size distribution using a Next Generation Impactor at 30 l/min.