Photo- and Thermal Degradation of Piroxicam in Aqueous Solution

M. AMINUDDIN, U. NAZIM* AND I. AHMAD
Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Toll Plaza, Super Highway, Karachi-74600, Pakistan

Light and temperature have considerable effect on the degradation of piroxicam in aqueous solutions. The pH and acetate buffer ions also affect the degradation process. The apparent first-order rate constants for the photochemical and thermal degradation of piroxicam have been determined as 2.04–10.01 and 0.86-3.06×10−3 min⁻¹, respectively. The first-order plots for the degradation of piroxicam showed good linearity within a range of 20-50% loss of piroxicam at pH 2.0-12.0. The rate-pH profile for the photodegradation of piroxicam is a U-shaped curve and for the thermal degradation a bell-shaped curve in the pH range of 2.0-12.0. The thermal degradation of piroxicam was maximum around pH 6.0. It is increased in the presence of acetate ions but was not affected by citrate and phosphate ions.

Key words: Buffer effect, kinetics, piroxicam, photodegradation, thermal degradation

Piroxicam, 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide) (fig. 1) belongs to the class of nonsteroidal antiinflammatory drugs (NSAIDs), which is structurally unrelated but pharmacologically similar to other NSAIDs[1]. A number of degradation products of piroxicam are reported in British Pharmacopoeia[2], including 2-aminopyridine, which has been identified as a hydrolytic product by some workers[3,4]. The hydrolysis of cinnoxicam follows a pseudo-first order reaction as a function of temperature[5]. Some studies on the thermal degradation[5-7] and photodegradation[8-10] of piroxicam have been conducted in the solid state and in aqueous solution.

In the present work the degradation of piroxicam over a wide pH range under the influence of heat, light and buffers has been studied and the kinetics of theses reactions evaluated. The relation of rates of degradation with pH has been developed and the pH of maximum stability has been reported.

MATERIALS AND METHODS

Piroxicam was obtained from Sigma Chemical Co., 1,10–phenanthroline, ammonium iron (III) sulphate dodecahydrate, hydrochloric acid and methanol were obtained from Merck. The reagents were analytical grade from BDH. The following buffers were used throughout: KCl + HCl buffer, pH 2.0; Citric acid + NaHPO₄, pH 3.0-7.0; Na₂B₄O₇·10H₂O + NaOH, pH 8.0-10.0; NaHCO₃ + NaOH, pH 11.0; NaHPO₄ + NaOH, pH 11.5-12.0; the ionic strength in each case was 0.05 M.

All absorbance measurements were made on a Shimadzu UV/Vis model UV-1601 spectrophotometer (range 190-1100 nm).

Assay method:

The assay of piroxicam in pure and degraded solutions was carried out by a previously reported method[11], according to the following procedure: A 0.6 ml of the degraded solution was placed in

![Structure of piroxicam](image.png)

Fig. 1: Structure of piroxicam
a 10 ml volumetric flask, 8 ml of acidified 1,10–
phenanthroline solution was added, the pH was
adjusted to 3.5 with 0.5M NaOH/HCl and the solution
made up to volume. The contents were mixed,
allowed to stand for 25 min. at room temperature
and the absorbance measured at 510 nm. The
concentration of piroxicam in the degraded solutions
was determined using a calibration curve (fig. 2).
The validity of Beer’s law was confirmed in the
concentration range used for the assay.

Photodegradation:
A 10 ml aliquot of piroxicam solution (3.31 mg)
was placed in a 250 ml beaker and diluted to almost
80 ml. The pH of the solution was adjusted to the
desired value (2.0-12.0) with appropriate buffer. The
solution was transferred to a 100 ml volumetric flask,
made up to volume with the buffer and irradiated
with a Philips 30 W TUV- tube fixed horizontally
at a distance of 30 cm from the centre of the flask.
Samples were withdrawn at appropriate intervals for
spectrophotometric assay.

Thermal degradation:
A volumetric flask containing 3.31 mg/100 ml
solution of piroxicam, adjusted to the desired pH
value (2.0-12.0) with appropriate buffer, was placed in
a thermostat water bath and heated to 100°. Samples
were withdrawn at appropriate intervals, cooled to
room temperature and assayed for piroxicam content.

RESULTS AND DISCUSSION

Piroxicam shows absorption maxima at 242 nm
(0.1 M HCl), and 256, 290 and 358 nm (methanol)\(^{[12]}\).

Photochemical degradation of piroxicam solution at
pH 2.0 (maximum degradation) showed absorption
maxima at 242 and 356 nm\(^{[12]}\), which gradually
decreased with time, indicating the degradation of
piroxicam on UV exposure. However, after 3 h the
spectrum was almost stable in the 270-330 nm region.
Similar spectral changes were observed in piroxicam
solutions degraded in neutral and alkaline solutions.

First-order plots of log concentration versus time for
the photochemical reactions (pH 2.0-12.0) showed
good linearity within a range of 20-50% loss of
piroxicam (fig. 3) and the rates were found to be
affected by the pH of the solution (Table 1). The
rate-pH profile for the photodegradation of piroxicam
is U-shaped which shows that the photodegradation
may undergo specific acid-base catalysis. This results

\(R^2 = 0.9996\)

![Fig. 2: Calibration curve for the determination of piroxicam](image1)

![Fig. 3: Photodegradation of piroxicam solution at pH 2.0](image2)

<table>
<thead>
<tr>
<th>pH</th>
<th>(k \times 10^3) (min(^{-1}))</th>
<th>Corr. coeff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>9.380</td>
<td>0.999</td>
</tr>
<tr>
<td>2.4</td>
<td>6.010</td>
<td>0.993</td>
</tr>
<tr>
<td>3.0</td>
<td>3.510</td>
<td>0.992</td>
</tr>
<tr>
<td>4.0</td>
<td>2.680</td>
<td>0.996</td>
</tr>
<tr>
<td>5.0</td>
<td>2.040</td>
<td>0.993</td>
</tr>
<tr>
<td>6.0</td>
<td>2.240</td>
<td>0.992</td>
</tr>
<tr>
<td>7.0</td>
<td>2.320</td>
<td>0.993</td>
</tr>
<tr>
<td>8.0</td>
<td>2.900</td>
<td>0.992</td>
</tr>
<tr>
<td>9.0</td>
<td>3.460</td>
<td>0.998</td>
</tr>
<tr>
<td>9.5</td>
<td>5.500</td>
<td>0.994</td>
</tr>
<tr>
<td>10.0</td>
<td>6.330</td>
<td>0.997</td>
</tr>
<tr>
<td>10.5</td>
<td>8.480</td>
<td>0.999</td>
</tr>
<tr>
<td>11.0</td>
<td>8.935</td>
<td>0.997</td>
</tr>
<tr>
<td>11.5</td>
<td>9.670</td>
<td>0.999</td>
</tr>
<tr>
<td>12.0</td>
<td>10.01</td>
<td>0.998</td>
</tr>
</tbody>
</table>
in an increase in the rate with a decrease in pH in the acid region and with an increase of rate in pH in the alkaline region. The almost constant photodegradation rate between pH 4 and 6 appears to be due to the solvent catalytic effect that is, the un-ionized water-catalyzed reaction (Table 1, fig. 4). The rate law for the acid-base catalyzed reaction may be written as:

\[K_{obs} = k_0 + k_1 [H^+] + [OH^-]. \]

At low pH, the term \(k_1 [H^+] \) is greater and specific hydrogen ion catalysis is observed. Similarly at high pH, the concentration of \([OH^-]\) is greater and specific hydroxyl ion catalysis is observed.

Many drugs undergo degradation to give U-shaped rate-pH profiles; such profiles have been observed for the degradation of penicillin\[13\], cytarabine\[14\], amphotericin B\[15\], carbenicillin\[16\], cyanocobalamin\[17\], and diltiazem\[18\].

The spectral changes in the absorption spectra of piroxicam solution (pH 6.0) on heating at 100° for two hours showed a gradual loss of absorbance around 356 and 250 nm indicating degradation of the molecule to unknown products. The degradation may be due to the hydrolysis of piroxicam by cleavage of the amide bond attached to the 2-pyridine ring\[3,4\] and the resultant absorption in the 200-400 nm regions. Similar changes were observed at other pH values.

The thermal degradation of piroxicam solution carried out at pH range 2.0-12.0 also followed first-order kinetics (fig. 5). The apparent first-order rate constants for the reactions are reported in Table 2.

TABLE 2: APPARENT FIRST-ORDER RATE CONSTANTS FOR THE THERMAL DEGRADATION OF PIROXICAM AT pH 2.0-12.0

<table>
<thead>
<tr>
<th>pH</th>
<th>(k \times 10^3) (min(^{-1}))</th>
<th>Corr. coeff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>0.86</td>
<td>0.993</td>
</tr>
<tr>
<td>3.0</td>
<td>1.07</td>
<td>0.992</td>
</tr>
<tr>
<td>3.5</td>
<td>1.56</td>
<td>0.994</td>
</tr>
<tr>
<td>4.0</td>
<td>1.79</td>
<td>0.997</td>
</tr>
<tr>
<td>5.0</td>
<td>2.85</td>
<td>0.993</td>
</tr>
<tr>
<td>5.5</td>
<td>3.02</td>
<td>0.996</td>
</tr>
<tr>
<td>6.0</td>
<td>3.06</td>
<td>0.993</td>
</tr>
<tr>
<td>7.0</td>
<td>2.82</td>
<td>0.991</td>
</tr>
<tr>
<td>7.5</td>
<td>2.44</td>
<td>0.995</td>
</tr>
<tr>
<td>8.0</td>
<td>2.08</td>
<td>0.992</td>
</tr>
<tr>
<td>9.0</td>
<td>1.68</td>
<td>0.992</td>
</tr>
<tr>
<td>10.0</td>
<td>1.52</td>
<td>0.992</td>
</tr>
<tr>
<td>11.0</td>
<td>1.33</td>
<td>0.998</td>
</tr>
<tr>
<td>11.5</td>
<td>1.19</td>
<td>0.996</td>
</tr>
<tr>
<td>12.0</td>
<td>0.95</td>
<td>0.996</td>
</tr>
</tbody>
</table>

The thermal degradation of piroxicam represents a bell-shaped pH-rate profile in the pH range 2.0-12.0 (fig. 6) showing the pH of maximum degradation.
around 6.0, which then slows down due to ionization of the molecule. Such curves indicate the presence of two ionisable groups in the molecule and the most reactive species is the non-ionized form\(^{[19]}\). The bell-shaped pH-rate profile of piroxicam shows the pH of maximum degradation at 6.0. The rate of the reaction is enhanced with pH up to 6.0 due to the pH dependent change in the rate-determining step and then slows down due to ionization of the molecule. This may be applied to the degradation of piroxicam by hydrolysis in which the rate of reaction depends on the species present at a particular pH and its variation with the ionization of the molecule.

Examples of bell-shaped pH-rate profiles include the hydrolysis of estrone phosphate\(^{[20]}\), dicarbazine\(^{[21]}\), hydrochlorothiazide\(^{[22]}\), tyrphostins\(^{[23]}\) and decarboxylation of 4-aminosalicylic acid\(^{[24]}\).

The Effect of buffer ions (acetate, citrate, phosphate) on the rate of thermal degradation of piroxicam (100°) has been studied at pH 5.6 (pH\(_{\text{max}}\)). The citrate and phosphate ions do not exert any effect on the rate of degradation. However, the acetate ions were found to increase the rate of thermal degradation.

TABLE 3: APPARENT FIRST-ORDER RATE CONSTANTS FOR THE THERMAL DEGRADATION OF PIROXICAM AT pH 5.6 IN THE PRESENCE OF ACETATE IONS

<table>
<thead>
<tr>
<th>Buffer conc. (M)</th>
<th>(k \times 10^3) (min(^{-1}))</th>
<th>Corr. coeff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.79</td>
<td>0.999</td>
</tr>
<tr>
<td>0.2</td>
<td>3.08</td>
<td>0.998</td>
</tr>
<tr>
<td>0.3</td>
<td>3.32</td>
<td>0.998</td>
</tr>
<tr>
<td>0.4</td>
<td>3.55</td>
<td>0.999</td>
</tr>
<tr>
<td>0.5</td>
<td>3.79</td>
<td>0.999</td>
</tr>
</tbody>
</table>

The second-order rate constant for the base-catalyzed degradation of piroxicam in the presence of acetate ions is \(1.90 \times 10^{-3}\) M\(^{-1}\) min\(^{-1}\). Thus the presence of acetate ions in the solution containing piroxicam leads to an increase in the rate of degradation due to the catalytic effect of these ions and should be avoided in the preparation of piroxicam solutions (Table 3, fig. 7).

ACKNOWLEDGEMENTS

I (U.N.) wish to express my feelings of thanks to Prof. Dr. S. Fazal Hussain, C.E.O and Dr. Shaukat Khalid, Acting Dean, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi who provided me the necessary research facilities to carry out this research work.

REFERENCES

Accepted 8 July 2011
Revised 1 July 2011
Received 16 September 2010