Phytochemical Investigation of *Parkinsonia aculeata*

*Parkinsonia aculeata* stems have been shown to contain glycerol β-butanoate α, α'-dipentanoate, β-sitosterol, glycerol α-heptanoate α'-octanoate, β-sitosteryl-D-glucoside and sucrose. Of these, the two glycerides are being reported for the first time.

*Parkinsonia aculeata* belongs to Leguminosae family and *Caesalpiniaeae* subfamily. Its flowers have been reported to have antipyretic activity. Its alcoholic extract exhibits central nervous system depressant activity and its aqueous extract shows cholinomimetic activity. A literature survey reveals that there is no report on the chemical investigation of its stems. The present work has therefore been carried out to isolate and characterise the chemical components of its stems.

*For correspondence*

---

Sterol (2, 60 mg), (iii) glycerol α-heptanoate α'-octanoate (3, 10 mg), (iv) β-sitosteryl-β-D-glucoside (4, 50 mg) (v) sucrose (5, 60 mg) and the eluates for these are (i) benzene: petroleum ether (1:19), (ii) benzene: petroleum ether (1:1), (iii) ethyl acetate: benzene (1:19), (iv) ethyl acetate: benzene (1:3), (v) methanol: ethyl acetate (1:4). The two glycerides are hitherto unreported compounds and their data is given hereunder.

Glycerol β-butanoate ω-ω-1-dipentanoate (1) was crystallised from benzene, m.p. 68-70°C. Its Rf value was found to be 0.65 in benzene: petroleum ether (1:4). Found: C, 61.77; H, 9.05; C19H34O4 required: C, 61.81; H, 9.09. vmax (KBr, cm⁻¹): 725, 802, 864, 1034, 1096, 1173, 1258, 1373, 1466, 1682, 1736. 1H NMR (δ, CDCl3): 0.88 (9H, t, J 7.5 Hz, 3xMe), 1.25 (4H, m, 2xCOCH2CH2CH3), 1.61 (6H, m, 3xCOCH2CH3), 2.29 (6H, t, J 8.0 Hz, 3xCOCH3), 4.05 (6H, m, 2xCH2, 1xCH). GCMS (m/z, rel. int.): 332 (M⁺+4, 1.8), 322 (M⁺+2, 8.1), 321 (M⁺+1, 58.8), 275 (1.6), 271 (3.4), 229 (2.6), 213 (1.5), 212 (7.9), 211 (70.0), 169 (100.0), 127 (12.2), 109 (54.6).

Glycerol α-heptanoate α'-octanoate (3) was crystallised from ethyl acetate, m.p. 86-88°C. Its Rf value was found to be 0.80 in ethyl acetate: benzene (1:4) Found: C, 65.40; H, 10.27; C19H34O4 required: C, 65.45; H 10.30. vmax (KBr, cm⁻¹): 725, 802, 864, 1026, 1096 1380, 1466, 1736 and 3425. 1H NMR (δ, CDCl3): 0.87 (6H, J 7.5 Hz, 2xCH3), 1.25 (14H, m, 7xCH2), 1.61 (4H, m, 2xCOCH2CH3), 2.33 (4H, t, J 8.0 Hz, 2xCOCH3), 2.72 (1H, m, 1xCH), 4.15 (4H, d, J 7.5 Hz, 2xCH2). GCMS (m/z, rel. int.): 332 (M⁺+2, 10.4), 331 (M⁺+1, 64.2), 218 (8.5), 212 (11.3), 211 (66.0), 169 (100.0), 127 (12.3), 109 (55.7).

ACKNOWLEDGEMENTS

We are thankful to Mr. Dubey, Landscape, HAU, Hisar, for the supply of the plant material.

REFERENCES


Spectrophotometric Determination of Hydroxy Citric Acid

BENNY ANTONY, WINNY VARGHESE* AND MERINA ELIAS

Dept. of Chemistry, Mar Athanasius College, Kothamangalam-686 666, Kerala, India

Accepted 23 July 1999
Received 2 July 1998

Spectrophotometric determination of hydroxy citric acid (HCA) present in Garcinia cambogia fruit is proposed here. This method is based upon, the colour complex formation (λmax: 467 nm) between hydroxy citric acid and sodium meta vanadate.

Hydroxy citric acid (HCA) is the major constituent of Garcinia cambogia, an exotic fruit grown in the southern parts of India. Garcinia cambogia, commonly known as "Malabar Tamarind" is regarded recently as the best natural medicine for controlling obesity. Garcinia cambogia extract as its calcium salt is a widely accepted OTC (over the counter) drug in the USA and Japan.

The method proposed here by spectrophotometry is fast, accurate and specific for HCA. HCA is easily liable to form lactone and lactones give negative results. In this estimation procedure, the HCA lactone was converted into the respective calcium salt followed by hydrolysis using dilute sulphuric acid and colour reaction with sodium meta vanadate solution. The absorbance was measured at 467 nm. The standard used was ethylene