CONTENTS

REVIEW ARTICLES
Recent Trends in Drug-Likeness Prediction: A Comprehensive Review of In Silico Methods
R. U. KADAM AND N. ROY 609-615

Biodegradable Polymers: Which, When and Why?
V. B. KOTWAL, MARIA SAIFEE, NAZMA INAMDAR AND KIRAN BHISE 616-625

RESEARCH PAPERS
Strong Cation Exchange Resin for Improving Physicochemical Properties and Sustaining Release of Ranitidine Hydrochloride
S. KHAN, A. GUHA, P. B. PATEL, AND P. KATARIYA 626-632

Novel Co-Processed Excipients of Mannitol and Microcrystalline Cellulose for Preparing Fast Dissolving Tablets of Glipizide
S. JACOB, A. A. SHIRWAIKAR, A. JOSEPH, K. K. SRINIVASAN 633-639

Formulation and Optimization of Directly Compressible Isosizid Modified Release Matrix Tablet
M. C. GOHEL, R. K. PARIKH, M. N. PADSHALA, K. G. SARVAIYA AND D. G. JENA 640-645

Effect of Casting Solvent and Polymer on Permeability of Propranolol Hydrochloride Through Membrane Controlled Transdermal Drug Delivery System
T. E. G. K. MURTHY AND V. S. KISHORE 646-650

Preparation of Mucosabsive Microspheres for Nasal Delivery by Spray Drying
MAHALAXMI RATHANANAND, D. S. KUMAR, A. SHIRWAIRAKAI, RAVI KUMAR, D. SAMPATH KUMAR AND R. S. PRASAD 651-657

Effect of Polymers on Crystallo-co-agglomeration of Ibuproteen-Paracetamol: Factorial Design

Synthesis and Antimicrobial Evaluation of Some Novel 2-imino-3-(4'-carboxamido pyridyl)-5-Arylidene-4-Thiazolidinones and their Brominated Derivatives
P. MISHRA, T. LUKOSE AND S. K. KASHAW 665-668

Measurement of Urine and Plasma Oxalate with Reusable Strip of Amaranthus Leaf Oxalate Oxidase
NISHA SHARMA, MINAKSHI SHARMA, V. KUMAR AND C. S. PUNDIR 669-673

SHORT COMMUNICATIONS
Simultaneous HPLC Estimation of Omeprazole and Domperidone from Tablets
LAKSHMI SIWASUBRAMANIAN AND V. ANILKUMAR 674-676

Isolation and Evaluation of Fenugreek Seed Husk as a Granulating Agent
AMELIA AVACHAT, K. N. GUJAR, V. B. KOTWAL AND SONALI PATIL 676-679

Synthesis and In Vitro Efficacy of some Halogenated Imine Derivatives as Potential Antimicrobial Agents
A. K. HALVE, DEEPTI BHADAURIA, B. BHASKAR, R. DUBEY AND NASIRUDDIN SHARMA 680-682

Simultaneous Spectrophotometric Estimation of Atorvastatin Calcium and Ezetimibe in Tablets
S. S. SONAWANE, A. A. SHIRKHEDAKAR, R. A. FURSULE AND S. J. SURANA 683-684

High Performance Thin Layer Chromatographic Estimation of Lansoprazole and Domperidone in Tablets
J. V. SUSHEEL, M. LEKHA AND T. K. RAVI 684-686

Antimicrobial Activity of Helicteres isora Root
S. VENKATESH, K. SAILAXMI, B. MADHAVA REDDY AND MULLANGI RAMESH 687-689

Synthesis and Antibacterial Activity of 2-phenyl-3,5-diphenyl (substituted)-6-aryl-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4-d]thiazoles

Simultaneous Estimation of Aceclofenac, Paracetamol and Chlороzacone in Tablets
G. GARG, SWARNLATA SARAF AND S. SARAF 692-694

Reverse Phase High Performance Liquid Chromatography Method for Estimation of Ezetimibe in Bulk and Pharmaceutical Formulations
S. K. AKMAR, LATA KOTHAPALLI, ASHA THOMAS, SUMITRA JANGAM AND A. D. DESHPANDE 695-697

Synthesis and Antiinfl ammatory Activity of N-Aryl Anthranilic Acid and its Derivatives

RP-HPLC Method for the Determination of Atorvastatin calcium and Nicotinic acid in Combined Tablet Dosage Form
D. S. SHAH, K. K. BHATT, R. S. MEHTA, M. B. SHANKAR AND S. L. BALDANA 700-703

Determination of Etoricoxib in Pharmaceutical Formulations by HPLC Method
H. M. PATEL, B. N. SUHAGIA, S. A. SHAH AND I. S. RATHOD 703-705

Proceedings of the Symposium on Advances in Pulmonary and Nasal Drug Delivery, October 2007, Mumbai

Albunin Microspheres of Fluticasone Propionate Inclusion Complexes for Pulmonary Delivery

Design and Development of Thermoreversible Mucoadhesive Microemulsion for Intranasal Delivery of Sumatriptan Succinate
R. S. BHANUSHALI AND A. N. BAJAJ 709-712

Preparation and Characterization of Chitosan Nanoparticles for Nose to Brain Delivery of a Cholinesterase inhibitor BHAVNA, V. SHARMA, M. ALI, S. BABOOTA AND J. ALI 712-713

Poloxamer Coated Fluticasone Propionate Microparticles for Pulmonary Delivery: In Vivo Lung Deposition and Efficacy Studies

Sustained Release Budesonide Liposomes: Lung Deposition and Efficacy Evaluation

Generation of Budesonide Microparticles by Spray Drying Technology for Pulmonary Delivery
S. R. NAIKWADE AND A. N. BAJAJ 717-721

Microemulsion of Lamotrigine for Nasal Delivery
A. J. SHENDE, R. R. PATIL AND P. V. DEVARAJAN 721-722

Development of a pMDI Formulation Containing Budesonide
E. ROBINS, G. BROUET AND S. PRIOLKAR 722-724

Development of a pMDI Formulation Containing Salbutamol
E. ROBINS, G. WILLIAMS AND S. PRIOLKAR 724-726

Aqua Triggered In Situ Gelling Microemulsion for Nasal Delivery
R. R. SHELKE AND P. V. DEVARAJAN 726-727

In vivo Performance of Nasal Spray Pumps in Human Volunteers By SPECT-CT Imaging
S. A. HAZARE, M. D. MENON, P. S. SONI, G. WILLIAMS AND G. BROUET 728-729

Nasal Permeation Enhancement of Sumatriptan Succinate through Nasal Mucosa
S. S. SHIDHAYE, N. S. SHAH, R. S. MEHTA, S. B. SUTAR AND V. J. KOTWAL 729-731

Formulation Development of Eucalyptus Oil Microemulsion for Intranasal Delivery
N. G. TIWARI AND A. N. BAJAJ 731-733
Atorvastatin calcium (ATV) is chemically \(\text{[R–(R*,R*)]–2-(4-flurophenyl)–\(\beta\),\(\delta\)-dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]–1H-pyrrole-1-heptanoic acid calcium salt trihydrate.}\) Atorvastatin calcium is an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-Co A) reductase. This enzyme catalyses the conversion of HMG-Co A to mevalonate, an early and rate limiting step in cholesterol biosynthesis\(^1\)\(^-\)\(^2\). Nicotinic acid (NIC) is chemically pyridine-3-carboxylic acid. Nicotinic acid lowers plasma triglyceride and cholesterol concentration. It acts as an antilipolytic drug in adipose tissue, increases the activity of lipoprotein lipase and decreases esterification of triglycerides in liver. It is used for Pellagra and in hyperlipoproteinaemia.

A literature survey regarding quantitative analysis of these drugs revealed that attempts were made to develop analytical methods for ATV using extractive spectrophotometry\(^3\), HPLC\(^4\)\(^-\)\(^8\), GC-MS\(^9\), LC-MS\(^10\), LC- electrospray tandem mass spectrometry\(^11\)\(^-\)\(^13\) and HPTLC\(^14\) methods, while for estimation of ATV and aspirin combination HPLC\(^15\) method had been reported. Estimation of NIC had been reported by methods like HPLC\(^16\)\(^-\)\(^19\), capillary electrophoresis\(^20\) and light-induced photo transformation\(^21\) of nicotinic acid with laser and UV.

ATV and NIC combination is available in the market in the form of a tablet. This paper describes reverse phase high performance liquid chromatographic method for the estimation of ATV and NIC combination in mixture in tablet dosage form.

A High performance liquid chromatographic instrument (Shimadzu HPLC class VP series) with LC-10AT VP pump, variable wavelength programmable UV/Vis detector SPD-10AVP and Rheodyne injector (7725i) with 20 µl fixed loop was used. Chromatographic analysis was performed using Spinchrom Software on a Phenomenex Luna C-18 column with 250×4.6 mm i.d. and 5 µm particle size. Chromatographic estimation was performed on an equilibrated C18 column using mobile phase 0.02 M potassium dihydrogen phosphate:methanol:acetonitrile (20:40:40, pH 4) and detection was performed at 240 nm. The sample was injected using a 20 µL fixed loop, and the total run time was 10 min. Analytically pure ATV and NIC were obtained as gift samples from M/s Blue Cross Labs. Ltd., (Mumbai, India) and M/s Torrent Pharmaceutical Ltd., (Ahmedabad, India). Acetonitrile, methanol, water (E. Merck, Mumbai, India) were of HPLC grade, while ortho-phosphoric acid and potassium dihydrogen phosphate (S. D. Fine Chemicals, Mumbai, India) were of analytical grade. Tablet formulation A (Avas Plus, Micro Labs. Ltd., India) and B (Tonact Plus, Lupin Lab., India) containing labeled amount of 10.34 mg ATV and 375...
mg of NIC were procured from a local pharmacy store.

A 1000 µg/ml stock solution of ATV and NIC in methanol was prepared separately. ATV solution was further diluted with methanol to obtain final concentration of 100 µg/ml. Appropriate aliquots of ATV and NIC stock solutions were diluted in mobile phase to obtain final concentrations of 2, 4, 8, 12, 20, 24 µg/ml of ATV and 60, 80, 100, 150, 200, 250 µg/ml of NIC. The solutions were injected using a 20 µL fixed loop system and chromatograms were recorded. Calibration curves were constructed by plotting average peak area versus concentrations and regression equations were computed for ATV and NIC.

Twenty tablets were weighed and finely powdered. Powder equivalent to ATV 10.34 mg and 375 mg NIC was accurately weighed and transferred to a 50 ml volumetric flask and 20 ml of mobile phase was added to the same. The flask was shaken, and the volume was diluted to the mark with the same mixture. The above solution was filtered and appropriate volume of the aliquot was transferred to a 50 ml volumetric flask. The volume was made up to the mark with mobile phase to obtain 4.13 µg/ml of ATV and 150 µg/ml of NIC. The solution was injected at above chromatographic conditions and peak areas were measured. The quantification was carried out by keeping these values to the straight line equation of calibration curve.

The method was validated for accuracy, precision, specificity, detection limit, quantification limit and robustness. The accuracy of the method was determined by calculating recoveries of ATV and NIC by method of standard additions. The intra day and inter day precision study of ATV and NIC was carried out by estimating the corresponding responses 3 times on the same day and on 3 different days for 3 different concentrations of ATV (4, 8, 12 µg/ml) and NIC (100, 150, 200 µg/ml). The repeatability studies were carried out by estimating response of three different concentrations of ATV (2, 4, 8 µg/ml) and NIC (80, 100, 200 µg/ml) for triplicate and results are reported in terms of relative standard deviation (RSD). For specificity study commonly used excipients (starch, microcrystalline cellulose and magnesium stearate) present in selected tablet formulation were spiked into a pre weighed quantity of drugs. The chromatogram was taken by appropriate dilutions and the quantities of drugs were determined. Limit of detection (LOD) was the concentration that yielded signal to noise ratio (S/N) 3:1 and limit of quantification (LOQ) was the concentration that yielded signal to noise ratio (S/N) 10:1. Robustness of the method was studied by changing the composition of organic phase by ±5% and the pH by ±0.2, and also by observing the stability of the drugs for 24 h at 35±2°C temperature in the mobile phase.

Selection of mobile phase was performed based on resolution, asymmetric factors and theoretical plates obtained for both ATV and NIC. The mobile phase 0.02 M potassium dihydrogen phosphate: methanol:acetonitrile (20:40:40, pH 4) was found to be satisfactory and gave two well-resolved peaks for ATV and NIC. The retention time for ATV and NIC

![Fig. 1: Typical chromatogram of Atorvastatin calcium (ATV) and Nicotinic acid (NIC). Chromatogram showing well resolved peak of atorvastatin calcium and nicotinic acid.](image)

TABLE 1: REGRESSION ANALYSIS OF THE CALIBRATION CURVES FOR ATV AND NIC

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ATV</th>
<th>NIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity range (µg/ml)</td>
<td>2-24</td>
<td>60-250</td>
</tr>
<tr>
<td>Slope</td>
<td>27.737</td>
<td>8.574</td>
</tr>
<tr>
<td>Standard deviation of slope</td>
<td>0.0804</td>
<td>0.0086</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.803</td>
<td>-7.99</td>
</tr>
<tr>
<td>Standard deviation of intercept</td>
<td>0.618</td>
<td>0.983</td>
</tr>
<tr>
<td>Correlation coefficient (r)</td>
<td>0.9998</td>
<td>0.9993</td>
</tr>
</tbody>
</table>

ATV is atorvastatin calcium; NIC is nicotinic acid

TABLE 2: SUMMARY OF VALIDATION PARAMETERS FOR THE PROPOSED METHOD

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ATV</th>
<th>NIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection limit (µg/ml)</td>
<td>0.071</td>
<td>0.11</td>
</tr>
<tr>
<td>Quantitation limit (µg/ml)</td>
<td>0.215</td>
<td>0.332</td>
</tr>
<tr>
<td>Accuracy (%)</td>
<td>97.93-101.16</td>
<td>98.82-101.3</td>
</tr>
<tr>
<td>Precision (RSDa, %)</td>
<td>0.22-0.60</td>
<td>0.03-0.10</td>
</tr>
<tr>
<td>Intraday (n=3)</td>
<td>0.39-1.18</td>
<td>0.10-0.18</td>
</tr>
<tr>
<td>Interday (n=3)</td>
<td>0.22-0.60</td>
<td>0.03-0.10</td>
</tr>
<tr>
<td>Repeatability (RSDa, n=3)</td>
<td>0.14-0.78</td>
<td>0.02-0.11</td>
</tr>
</tbody>
</table>

aRSD indicates relative standard deviation; ATV is atorvastatin calcium; NIC is nicotinic acid
were 3.6 min and 2.4 min, respectively (fig. 1). The resolution was found to be 6.9, which indicates good separation of peaks for both the compounds. The asymmetric factors for ATV and NIC were 1.4 and 1.57, respectively. UV overlain spectra of both the ATV and NIC showed that both the drugs absorbs appreciably at 240 nm so, 240 nm was selected as the detection wavelength in liquid chromatography.

The calibration curve for ATV was obtained by plotting the peak area of ATV versus concentration of ATV over the range of 2-24 µg/ml, and it was found to be linear with \(r = 0.9998 \). Similarly, the calibration curve for NIC was obtained over the range of 60-250 µg/ml and was found to be linear with \(r = 0.9993 \). The data of regression analysis of the calibration curves are shown in Table 1. The recoveries of ATV and NIC were found to be in the range of 97.93 - 101.16% and 98.82-101.30%, respectively. The validation parameters are summarized in Table 2. The proposed liquid chromatographic method was applied to the determination of ATV and NIC in their combined dosage forms (Table A and B). The results for ATV and NIC were comparable with the corresponding labeled amounts (Table 3).

Thus in proposed study, RP-HPLC method has been developed for determination of ATV and NIC in combined dosage form. The method was validated and found to be simple, sensitive, accurate and precise. The method was successfully applied for determination of drugs in their pharmaceutical formulations hence method can be used for routine analysis of ATV and NIC in combined dosage form.

ACKNOWLEDGEMENTS

The authors are grateful to M/s Blue Cross Labs. Ltd., Mumbai for providing gift sample of atorvastatin calcium and M/s Torrent Pharmaceuticals Ltd., Ahmedabad for providing gift sample of nicotinic acid.

REFERENCES

TABLE 3: ASSAY RESULTS OF COMBINED DOSAGE USING PROPOSED METHOD

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Labeled amount (mg)</th>
<th>Amount obtained (mg)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATV</td>
<td>NIC</td>
<td>ATV</td>
</tr>
<tr>
<td>A</td>
<td>10.34</td>
<td>375</td>
<td>10.17±0.110</td>
</tr>
<tr>
<td>B</td>
<td>10.34</td>
<td>375</td>
<td>10.26±0.095</td>
</tr>
</tbody>
</table>

*Mean value±standard deviation of three determinations; Table A is AWAS PLUS, Micro Labs. Ltd., India and Table B is TONACT PLUS, Lupin Lab., India containing labeled amount of 10.34 mg ATV and 375 mg of NIC; ATV is atorvastatin calcium; NIC is nicotinic acid.

www.ijpsonline.com
Determination of Etoricoxib in Pharmaceutical Formulations by HPLC Method

H. M. PATEL*, B. N. SUHAGIA, S. A. SHAH AND I. S. RATHOD
Department of Quality Assurance, L. M. College of Pharmacy, P. B. No: 4011, Navrangpura, Ahmedabad -380 009, India

Etoricoxib, a newer cyclo-oxygenase-2 inhibitor, is mainly used in the management of osteoarthritis, rheumatoid arthritis and acute gouty arthritis1-4. Chemically5, etoricoxib is a 5-chloro-6'-mehtyl-3-[4-(methylsulfonyl)phenyl]-2,3'-bipyridine, and is not yet official in any Pharmacopoeia. Its impurities studies and HPLC/MS-MS methods in matrix have been reported6–8. The availability of an HPLC method with high sensitivity and selectivity will be very useful for the estimation of etoricoxib in pharmaceutical dosage forms.

Etoricoxib working standard was a gift sample from M/S Sun Pharmaceutical Industries Ltd., Vapi, India, whereas rofecoxib was obtained from M/S Torrent Research Centre, Ahmedabad, India. Potassium dihydrogen phosphate (AR grade), methanol and acetonitrile (HPLC grade, E. Merck Limited, Bombay, India), orthophosphoric acid (LR grade, S. D. Fine-Chemicals Ltd., Mumbai, India) and triple distilled water were used in the study. Commercially available etoricoxib tablets claimed to contain 60, 90 and 120 mg of the drug were procured from the local market. Quantitative HPLC was performed on a isocratic high pressure liquid chromatograph (Shimadzu HPLC Class 10A series) with LC-10AS pumps, a multi wavelength UV/VIS detector (SPD-10A) and Kromasil 100 C-18 column (250 mm×4.6 mm i.d., particle size 5 µ). The HPLC system was equipped with the software Class CR-10 series version (Shimadzu).

The mobile phase was prepared by mixing acetonitrile, methanol and 10 mM potassium dihydrogen phosphate (pH 3.0 adjusted with 1% v/v ortho-phosphoric acid) in the ratio of 35:35:30 v/v. The mobile phase was filtered through a 0.45 µm membrane filter, degassed by ultrasonication for 15 min and pumped from the