CONTENTS

REVIEW ARTICLES
A Decision Tree for Rapid Quality Assurance and Control of Rifampicin-Containing Oral Dosage Forms for Global Distribution for Tuberculosis Treatment
Y. Ashokraj, Shrilutevi Agrawal and R. Panchagnula
1-4

Transdermal Delivery by Iontophoresis
SWATI RAWAT, SUDHA VENGURLEKAR, B. RAKESH, S. JAIN, G. SRIKARTI
5-10

RESEARCH PAPERS
In vivo Evaluation of Single Dose Tetanus Toxoid Vaccine Formulation with Chitosan Microspheres
11-15

Ionic Cross-linked Chitosan Beads for Extended Release of Ciprofloxacin: In vitro Characterization
A. Srinatha, J. K. Pandit and S. Singh
16-21

Design and Optimization of Diclofenac Sodium Controlled Release Solid Dispersions by Response Surface Methodology
H. N. Shivakumar, B. G. Desai and G. Deshmukh
22-30

Evaluation of Free Radical Scavenging Activity of an Ayurvedic Formulation, Panchvalkala Sheetal Anandjiwala, M. S. Bagul, M. Parabia and M. Rajani
31-35

Validation of Different Methods of Preparation of Adhatoda vasica Leaf Juice by Quantification of Total Alkaloids and Vasicine
S. Soni, Sheetal Anandjiwala, G. Patel and M. Rajani
36-42

Formulation and Characterization of Mucoadhesive Buccal Films of Glipizide
Mona Semalty, A. Semalty and G. Kumar
43-48

Synthesis, Antimicrobial and Anti-inflammatory Activity of 2,5-Disubstituted-1,3,4-oxadiazoles
G. Nagalakshmi
49-55

Ascorbic Acid Inhibits Development of Tolerance and Dependence to Opiates in Mice: Possible Glutamatergic or Dopaminergic Modulation
S. K. Kulkarni, C. Deshpande and A. Dhir
56-60

Design and In Vitro Characterization of Buccoadhesive Drug Delivery System of Insulin
J. Sahni, S. Raj, F. J. Ahmad and R. K. Khair
61-65

Development and Evaluation of a Cholera Hemorrhagic Hypertonic Ophthalmic Solution
A. V. Jithan, C. Krishna Mohan, and M. Vimaladevi
66-70

Optimization of Fast Dissolving Etoricoxib Tablets Prepared by Sublimation Technique
D. M. Patel and M. M. Patel
71-76

Furosemide-loaded Alginate Microspheres Prepared by Ionic Cross-linking Technique: Morphology and Release Characteristics
M. K. Das and P. C. Senapati
77-84

SHORT COMMUNICATIONS
Isolation of Liver Aldehyde Oxidase Containing Fractions from Different Animals and Determination of Kinetic Parameters for Benzaldehyde
R. S. Kadam and K. R. Iyer
85-88

Microwave-Induced Synthesis of Schiff Bases of Aminothiazolyl Bromocoumarins as Antibacterials
K. N. Venugopala and B. S. Jayashree
89-91

In vitro Antiviral Activity of some Novel Isatin Derivatives against HCV and SARS-CoV Viruses
91-94

Physicochemical and Pharmacokinetic Parameters in Drug Selection and Loading for Transdermal Drug Delivery
N. S. Chandrashekhar and R. H. Shobha Rani
94-96

HPLC Estimation of berberine in Tinospora cordifolia and Tinospora sinensis
G. V. Srinivasan, K. P. Unnikrishnan, A. B. Rema Shree and Indira Balachandran
96-99

Parenteral Formulation of Zopiclone
P. V. Swamy, P. Sushma, G. Chirag, K. Prasad, M. Younus Ali and S. A. Raju
99-102

Simultaneous Spectrophotometric Determination of Lansoprazole and Domperidone in Capsule Dosage Form
A. P. Shereje, A. V. Kasture, K. N. Gujar and P. G. Yeole
102-105

Novel 2-Pyrazoline Derivatives as Potential Antibacterial and Antifungal Agents
Suvarna Kini and A. M. Gandhi
105-108

Spectrophotometric Estimation of Ethamsylate and Mefenamic Acid from a Binary Mixture by Dual Wavelength and Simultaneous Equation Methods
Anuj Goyal and I. Singh
108-111

Novel Colon Targeted Drug Delivery System Using Natural Polymers
V. Ravi, T. M. Pramod Kumar and Siddaramaiah
111-113

Effect of Some Clinically Used Proteolytic Enzymes on Inflammation in Rats
A. H. M. Viswanatha Swamy and P. A. Patil
114-117

Synthesis and Pharmacological Evaluation of (6-Substituted 4-Oxo-4H-chromene-3 yl) methyl N-substituted Aminoacetates
Asmita Gajbhiye, V. Mallareddy and G. Achiaha
118-120

Development and In Vitro Evaluation of Buccoadhesive Tablets of Metoprolol Tartrate
P. D. Nakhat, A. A. Kondawar, L. G. Rathi and P. G. Yeole
121-124

RP-HPLC Estimation of Venlafaxine Hydrochloride in Tablet Dosage Forms
S. L. Baldania, K. K. Bhatt, R. S. Mehta, D. A. Shah and Tejal R. Gandhi
124-128

Simultaneous Estimation of Esomeprazole and Domperidone by UV Spectrophotometric Method
S. Lakshmana Prabu, A. Shirwaikar, Annine Shirwaikar, C. Dinesh Kumar, A. Joseph and R. Kumar
128-131

In Vitro Anthelmintic Activity of Baliospermum montanum Muell. Arg roots
R. G. Mal and R. R. Wadekar
131-133

REFEREES FOR INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES DURING 2006 & 2007
134-134
Simultaneous Estimation of Esomeprazole and Domperidone by UV Spectrophotometric Method

S. LAKSHMANA PRABU, A. SHIRWAIKAR1,*, ANNIE SHIRWAIKAR2, C. DINESH KUMAR2, A. JOSEPH3 AND R. KUMAR1
Department of Pharmaceutical Quality Assurance, 1Department of Pharmaceutics, 2Department of Pharmacognosy, 3Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal - 576 104, India

Lakshmana, et al.: Simultaneous Estimation of Esomeprazole and Domperidone

A novel, simple, sensitive and rapid spectrophotometric method has been developed for simultaneous estimation of esomeprazole and domperidone. The method involved solving simultaneous equations based on measurement of absorbance at two wavelengths, 301 nm and 284 nm, \(\lambda \) max of esomeprazole and domperidone respectively. Beer's law was obeyed in the concentration range of 5-20 \(\mu \)g/ml and 8-30 \(\mu \)g/ml for esomeprazole and domperidone respectively. The method was found to be precise, accurate, and specific. The proposed method was successfully applied to estimation of esomeprazole and domperidone in combined solid dosage form.

Key words: Esomeprazole, domperidone, \(\lambda \) max, spectrophotometric method

Esomeprazole magnesium trihydrate\(^1\) (ESO) is chemically bis(5-methoxy-2-[(S)-[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1-H-benzimidazole-1-yl) magnesium trihydrate, a compound that inhibits gastric acid secretion. Esomeprazole is cost effective in the treatment of gastric oesophageal reflux diseases. Esomeprazole is the S-isomer of omeprazole, the first single optical isomer proton pump inhibitor, generally provides better acid control than current racemic proton pump inhibitors and has a favorable pharmacokinetic profile relative to omeprazole\(^2\). Domperidone\(^3\) (DOM) chemically, [5-chloro-1-[1,3-(2,3-dihydro-2-oxo-1H-benzimidazole-1-yl)propyl]-4-piperidinyl-1,3-dihydro-2H-benzimidazole-2-one] is a dopamine antagonist. A detailed survey of literature revealed the estimation of omeprazole by gas chromatographic method\(^4\), UV spectrophotometric method\(^5-6\), TLC\(^7\) and several HPLC\(^8-20\) methods. Estimation of DOM included spectrophotometric methods\(^21-22\), HPLC\(^23-26\) and HPTLC\(^27\) in dosage forms. Combination of these two is used for the treatment of gastric esophagus reflux disease. However, no references have been found for simultaneous determination of ESO and DOM in pharmaceutical formulations. A successful attempt has been made to estimate two drugs simultaneously by spectrophotometric analysis.
A Shimadzu UV/Vis spectrophotometer, model 1601 (Japan) was employed with spectral bandwidth of 0.1 nm and wavelength accuracy of ±0.5 nm with automatic wavelength correction with a pair of 3 mm quartz cells. ESO, DOM (obtained as gift samples from Themis Laboratories Pvt. Ltd., Thane), methanol (Merck India Ltd., Mumbai) and distilled water were used in the present study.

Stock solutions (500 μg/ml) of ESO and DOM were prepared by dissolving separately 50 mg in 50 ml of methanol in 100 ml volumetric flasks, and the volume was made up to 100 ml with distilled water. The maximum absorbances of ESO and DOM were obtained at 301 nm (λ1) and 284 nm (λ2), respectively. ESO and DOM showed linearity with absorbance in the range of 5-20 μg/ml and 8-30 μg/ml at their respective maxima, which were validated by least square method. Coefficients of correlation were found to be 0.9972 for ESO and 0.9986 for DOM. For simultaneous estimation of ESO and DOM, a series of standard solutions in concentration range of 5 to 20 μg/ml, were prepared by diluting appropriate volumes of the standard stock solutions. The scanning solutions of ESO and DOM were carried out in the range of 200 to 400 nm against water as blank for obtaining the overlain spectra that are used in the analysis (fig. 1). Absorbance and absorptivities of series of standard solutions were recorded at selected wavelengths λ1 and λ2.

The absorptivity values for ESO and DOM at 284 nm were 243 ± 1.73 and 266 ± 1.80, respectively. At 301 nm the absorptivity of ESO and DOM were 383 ± 1.87 and 47 ± 1.73, respectively. The optical characteristics and regression values for the calibration curve are presented in Table 1. The method employed simultaneous equations using Cramer’s rule and matrices (C1 = λ1ε1 × Aλ1 + λ1ε2 × Aλ2 + Aλ1/λ2ε1 × λ2ε2 × λ2ε1 and C2 = λ1ε1 × Aλ1 + λ2ε1 × Aλ2, λ1ε1 × λ2ε2 × λ2ε1 + C1). A set of two simultaneous equations was framed using the mean of absorptivity values, given as Aλ1 = 243C1 + 266C2 and Aλ2 = 383C1 + 47C2, where, C1 and C2 are the concentrations of ESO and DOM respectively in simple solution (μg/ml). Aλ1 and Aλ2 are the absorbances of the sample solutions measured at 284 and 301 nm, respectively.

Twenty capsules were weighed accurately. The average weight was determined and then ground to a fine powder. A quantity equivalent to 30 mg of DOM and 20 mg of ESO were transferred to a 100 ml volumetric flask. The contents were ultrasonicated for 10 min with 50 ml of methanol, made to volume with distilled water. Then the solution was filtered through a Whatman filter paper (No. 40). The filtrate was further diluted with distilled water. The absorbance of the resulting solution was measured at 284 and 301 nm. The result of the analysis of the capsule formulation is presented in Table 2.

To study accuracy, reproducibility and precision of the proposed methods, recovery studies were carried out at three different levels by addition of standard drug solution to preanalysed sample. Results of recovery studies were found to be satisfactory and the results are presented in Table 3.

![Fig. 1: Overlain spectra of ESO and DOM. Overlain spectra of esomeprazole (ESO) and Domperidone (DOM) in water.](image-url)
The proposed method for simultaneous estimation of ESO and DOM in combined sample solutions was found to be simple, accurate and reproducible. Beer’s law was obeyed in the concentration range of 5-20 μg/ml and 8-30 μg/ml for esomeprazole and domperidone respectively. Co-efficient of variation was found to be 0.9972 and 0.9986 for ESO and DOM, respectively. The percentage recoveries were found to be in the range of 99.32 to 99.64% and 99.11 to 99.42% for ESO and DOM, respectively. Once the equations are determined, analysis requires only the measuring of the absorbance of the sample solution at two wavelengths selected, followed by a few simple calculations. It is a new and novel method and can be employed for routine analysis in quality control laboratories.

ACKNOWLEDGEMENTS

The authors thank Themis Laboratories Pvt. Ltd., Thane, for supplying gift samples of Esomeprazole and Domperidone to carry out this work.

REFERENCES

TABLE 3: RECOVERY STUDIES

<table>
<thead>
<tr>
<th>Drug in standard mixture solution (µg/ml)</th>
<th>% Recovery ± SD</th>
<th>Coefficient of variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESO</td>
<td>DOM</td>
<td>ESO</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>99.36 ± 0.144</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>99.32 ± 0.271</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>99.64 ± 0.355</td>
</tr>
</tbody>
</table>

SD stands for standard deviation, the results are mean of three readings (n = 3)
In Vitro Anthelmintic Activity of Baliospermum montanum Muell. Arg roots

R. G. MALI* AND R. R. WADEKAR
Department of Pharmacognosy and Phytochemistry, Smt. S.S. Patil College of Pharmacy, Chopda (Jalgaon) - 425 107, India

Mali, et al.: Anthelmintic Activity of Baliospermum montanum

Alcohol and aqueous extracts from the roots of Baliospermum montanum Muell. Arg were investigated for their anthelmintic activity against Pheretima posthuma and Ascardia galli. Various concentrations (10-100 mg/ml) of each extract were tested in the bioassay, which involved determination of time of paralysis and time of death of the worms. Both the extracts exhibited significant anthelmintic activity at highest concentration of 100 mg/ml. Piperazine citrate (10 mg/ml) was included as standard reference and distilled water as control.

Key words: Baliospermum montanum, anthelmintic activity, Pheretima posthuma, Ascardia galli

Baliospermum montanum Muell. Arg (Family: Euphorbiaceae) commonly known as Danti, is a leafy, monoecious under shrub distributed throughout India, Burma and Malaya1. All parts of the plant like leaves, seeds and roots have been traditionally used to relieve variety of ailments. Decoction of leaves is reported to be useful in asthma and expressed juice of young leaves is applied to a bleeding cut while leaves are applied as a bandage which stops haemorrhage, prevents suppuration and heals the wound. The seeds are used as a drastic purgative and seed oil as powerful hydrogogue cathartic and applied externally in rheumatism. In Ayurveda, roots of the plant are reported to be useful in jaundice, and in traditional system of medicine highly valued for treatment of leucoderma, piles, wound, anaemia, itching, pains and inflammations and reputed as an anthelmintic2-4. Earlier reports on pharmacological activity of the roots are scarce. In the present study, anthelmintic potential of alcoholic and aqueous extracts of roots of B. montanum have been evaluated.

*For correspondence
E-mail: ravigmali@yahoo.co.in.

The roots of B. montanum were collected from Chopda, Maharashtra during October/November 2005. The roots were identified and authenticated by the Department of Botany, SSVPS’s LK Dr. P.R. Ghogrey Science College, Dhule, Maharashtra and a voucher specimen was deposited at the Department of Pharmacognosy, Smt. S. S. Patil College of Pharmacy, Chopda.

The roots were cleaned, shade dried and coarsely powdered. The coarse powder of roots was then exhaustively extracted in a Soxhlet apparatus. Ethyl alcohol was used as a solvent for alcoholic extract whereas distilled water for aqueous extract. The solvent was allowed to evaporate in a rotary vacuum evaporator. The dry extracts obtained were subjected to various chemical tests to detect the presence of different phytoconstituents5,6.

Pheretima posthuma (Annelida), commonly known as earthworm were collected from the water logged areas and Ascardia galli (nematode) worms were obtained from freshly slaughtered fowls (Gallus gallus). Both worm types were identified at the P. G. Department of Zoology, Pratap College, Amalner.