Simultaneous Estimation of Metformin and Gliclazide in Tablets using Reverse Phase High Performance Liquid Chromatography

M. GANDHIMATHI*, K. ANANDAKUMAR, A. CHERIYAN AND T. K. RAVI
Department of Pharmaceutical Analysis, College of Pharmacy
Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore-641 044.

Accepted 18 May 2003
Revised 27 February 2003
Received 20 August 2002

A simple, efficient and reproducible method for the simultaneous determination of metformin and gliclazide from tablets has been developed using reversed phase high performance liquid chromatography. The separation was done using a mobile phase consisting of 0.025 M disodium hydrogen phosphate and acetonitrile (25:75 %v/v) with pH adjusted to 3.2 with dilute ortho phosphoric acid. Column used was Shimpack CLC C18 (250x4 mm i.d.) 5 µ with flow rate of 1 ml/min with detection at 240 nm. The external standard calibration method was employed for quantitation. An elution order was metformin (2.8 min) and gliclazide (4.3 min). The linear dynamic range was 5-500 µg/ml and 10-100 µg/ml for metformin and gliclazide, respectively. Analytical parameters were calculated and a full statistical evaluation included.

Metformin\(^1\) is an antidiabetic, which chemically is 1,1-dimethyl biguanide. It is official in IP, BP and USP. Gliclazide\(^2\) is also an antidiabetic but is a benzene sulfonamide derivative. Tablets containing 500 mg of metformin and 80 mg of gliclazide is available in the market as a combined dosage form. The reported analytical methods for the estimation of these two drugs employ either HPLC or spectroscopy\(^3,4\). The present method aims at developing an isocratic RP-HPLC method for the simultaneous determination of both drugs from tablets.

The apparatus used was a Shimadzu HPLC SPD10-A chromatograph equipped with fixed wavelength UV detector and model 7725i Rheodyne injector with 20 µl external loop. Column used was Shimpack CLC C18 (250x4 mm i.d.) 5 µ, operating at room temperature. The elution was carried out isocratically at the flow rate of 1 ml/min using disodium hydrogen phosphate (0.025 M) at pH 3.2 and acetonitrile in 25:75 ratio as mobile phase. The detector was set at 240 nm. Response of peak areas recorded and integrated using software.

Metformin and gliclazide were obtained from Bal Pharmaceuticals, Bangalore with certificate of analysis. HPLC grade acetonitrile and AR grade disodium hydrogen phosphate were obtained from S. D. Fine Chemicals Ltd, Mumbai.

Standard stock solutions of the drugs were prepared by dissolving 600 mg of metformin and 100 mg of gliclazide in 100 ml of mobile phase consisting of disodium hydrogen phosphate (0.025 M at pH 3.2) and acetonitrile in the ratio of 25:75 %v/v. The buffer was prepared by dissolving 3.53 g of disodium hydrogen phosphate in distilled water and diluting to 1000 ml in a volumetric flask. The mobile phase was filtered through 0.45 µm membrane filter paper and degassed before use.

For linearity studies, five different concentrations in the range of 60-300 µg/ml of metformin and 10-50 µg/ml of gliclazide were prepared using mobile phase. The chromatograms of these standard solutions were obtained by injecting 20 µl of each standard solution and standard curve were obtained by plotting the drug concentrations (µg/ml) Vs peak areas. The linear regression equation of metformin and gliclazide was, Y=0.0437xconcentration+ 0.0400 and Y=0.2330x(concentration)+(-0.1300), respectively. The correlation coefficient values were found to be 0.9998 and 0.9994 for metformin and gliclazide, respectively.

The external calibration method was employed for

*For correspondence
TABLE 1: SYSTEM SUITABILITY PARAMETERS.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Metformin</th>
<th>Gliclazide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Capacity factor</td>
<td>1.01</td>
<td>2.07</td>
</tr>
<tr>
<td>Asymmetry factor</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>No. of theoretical plates</td>
<td>12,268</td>
<td>12,956</td>
</tr>
<tr>
<td>LOD (ng/ml)</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>LOQ (ng/ml)</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

The results obtained by this method are precise and reproducible for the two drugs, metformin and gliclazide. Reproducibility of the method was done on six samples of metformin and gliclazide and the % RSD was found to be 0.98 and 0.32, respectively. The robustness of the method was confirmed by varying the concentration of the organic phase and buffer in the mobile phase and flow rate. The method was found to be robust in the conditions specified. The system suitability parameters were calculated to confirm the specificity of the developed method and shown in Table 1. The high percentage recovery and low standard deviation data (Table 2) were satisfactory and confirms the accuracy, precision and reliability of the method. Further this method eliminates complicated extraction of individual drugs for quantitation. Both drugs estimated with in 5 min. hence the present method is cost effective and faster, can be used for the routine analysis of these drugs from tablets.

ACKNOWLEDGEMENTS

The authors thank Bal Pharmaceuticals, Bangalore for free gift samples of the drugs.

REFERENCES

1. The Indian Pharmacopoeia, 4th Edn., The controller of Publication, Delhi, 1996, 469.