CONTENTS

REVIEW ARTICLES
A Decision Tree for Rapid Quality Assurance and Control of Ritampicin-Containing Oral Dosage Forms for Global Distribution for Tuberculosis Treatment
Y. ASHOKRAJ, SHRUTIDEVI AGRAWAL AND R. PANCHAGNULA

Transdermal Delivery by Iontophoresis
SWATI RAWAT, SUDHA VENGURLEKAR, B. RAKESH, S. JAIN, G. SRIKARTI

IONIC CROSS-LINKING TECHNIQUE: MORPHOLOGY AND Furosemide-loaded Alginate Microspheres Prepared by Sublimation Technique
D. M. PATEL AND M. M. PATEL

R. S. KADAM AND K. R. IYER 85-88
Microwave-Induced Synthesis of Schiff Bases of Aminothiazolyl Bromocoumarins as Antibacterials
K. N. VENUGOPALA AND B. S. JAYASHREE 88-91
In vitro Antiviral Activity of some Novel Isatin Derivatives against HCV and SARS-CoV Viruses

PHYSICOCHEMICAL AND PHARMACOKINETIC PARAMETERS IN Drug Selection and Loading for Transdermal Drug Delivery
N. S. CHANDRASHEKAR AND R. H. SHOBHA RANI 94-96
HPLC Estimation of berberine in Tinospora cordifolia and Tinospora sinensis
G. V. SRINIVASAN, K. P. UNNIKRISHNAN, A. B. REMA SHREE AND INDIRA BALACHANDRAN 96-99

RESEARCH PAPERS
In vivo Evaluation of Single Dose Tetanus Toxoid Vaccine Formulation with Chitosan Microspheres
R. MANIVANNAN, S. A. DHANARAJ, Y. UDAYA BHASKARA RAO, A. BALASUBRAMANIYAM, N. L. GOWRISHANKAR, N. JAWAHAR AND S. JUBIE

Ionic Cross-linked Chitosan Beads for Extended Release of Ciprofloxacin: In vitro Characterization
A. SRINATHA, J. K. PANDIT AND S. SINGH

Design and Optimization of Diclofenac Sodium Controlled Release Solid Dispersions by Response Surface Methodology
H. N. SHIVAKUMAR, B. G. DESAI AND G. DESHMHUK

Evaluation of Free Radical Scavenging Activity of an Ayurvedic Formulation, Panchvalkala SHEETAL ANANDJIWALA, M. S. BAGUL, M. PARABIA AND M. RAJANI

Validation of Different Methods of Preparation of Ascomyce Viscum Leaf Juice by Quantification of Total Alkaloids and Vascine
S. SONI, SHEETAL ANANDJIWALA, G. PATEL AND M. RAJANI

Formulation and Characterization of Mucoadhesive Buccal Films of Glipizide
MONA SEMALTY, A. SEMALTY AND G. KUMAR

Synthesis, Antimicrobial and Anti-inflammatory Activity of 2,5-Disubstituted-1,3,4-oxadiazoles
G. NAGALAKSHMI

Ascorbic Acid Inhibits Development of Tolerance and Dependence to Opiates in Mice: Possible Glutamatergic or Dopaminergic Modulation
S. K. KULKARNI, C. DESHPANDE AND A. DHIR

Design and In Vitro Characterization of Buccoadhesive Drug Delivery System of Insulin
J. SAHNI, S. RAI, F. J. AHMAD AND R. K. KHR

Development and Evaluation of a Cholonomelaphilic Hypertonic Ophthalmic Solution
A. V. JITHAN, C. KRISHNA MOHAN, AND M. VIMALADEVI

Optimization of Fast Dissolving Etoricoxib Tablets Prepared by Sublimation Technique
D. M. PATEL AND M. M. PATEL

Furosemide-loaded Alginate Microspheres Prepared by Ionic Cross-linking Technique: Morphology and Release Characteristics
M. K. DAS AND P. C. SENAPATI

ISOlation of Liver Aldehyde Oxidase Containing Fractions from Different Animals and Determination of Kinetic Parameters for Benzaldehyde
M. K. DAS AND P. C. SENAPATI

SHORT COMMUNICATIONS

Evaluation of Single Dose Tetanus Toxoid Vaccine Formulation with Chitosan Microspheres
R. MANIVANNAN, S. A. DHANARAJ, Y. UDAYA BHASKARA RAO, A. BALASUBRAMANIYAM, N. L. GOWRISHANKAR, N. JAWAHAR AND S. JUBIE

Ionic Cross-linked Chitosan Beads for Extended Release of Ciprofloxacin: In vitro Characterization
A. SRINATHA, J. K. PANDIT AND S. SINGH

Design and Optimization of Diclofenac Sodium Controlled Release Solid Dispersions by Response Surface Methodology
H. N. SHIVAKUMAR, B. G. DESAI AND G. DESHMHUK

Validation of Different Methods of Preparation of Ascomyce Viscum Leaf Juice by Quantification of Total Alkaloids and Vascine
S. SONI, SHEETAL ANANDJIWALA, G. PATEL AND M. RAJANI

Formulation and Characterization of Mucoadhesive Buccal Films of Glipizide
MONA SEMALTY, A. SEMALTY AND G. KUMAR

Synthesis, Antimicrobial and Anti-inflammatory Activity of 2,5-Disubstituted-1,3,4-oxadiazoles
G. NAGALAKSHMI

Ascorbic Acid Inhibits Development of Tolerance and Dependence to Opiates in Mice: Possible Glutamatergic or Dopaminergic Modulation
S. K. KULKARNI, C. DESHPANDE AND A. DHIR

Design and In Vitro Characterization of Buccoadhesive Drug Delivery System of Insulin
J. SAHNI, S. RAI, F. J. AHMAD AND R. K. KHR

Development and Evaluation of a Cholonomelaphilic Hypertonic Ophthalmic Solution
A. V. JITHAN, C. KRISHNA MOHAN, AND M. VIMALADEVI

Optimization of Fast Dissolving Etoricoxib Tablets Prepared by Sublimation Technique
D. M. PATEL AND M. M. PATEL

Furosemide-loaded Alginate Microspheres Prepared by Ionic Cross-linking Technique: Morphology and Release Characteristics
M. K. DAS AND P. C. SENAPATI
ACKNOWLEDGEMENTS

The authors thank the Principal, HKE Society’s College of Pharmacy, Gulbarga, for providing the necessary facilities to carry out the research work.

REFERENCES

Simultaneous Spectrophotometric Determination of Lansoprazole and Domperidone in Capsule Dosage Form

A. P. SHERJE*, A. V. KASTURE1, K. N. GUJAR AND P. G. YEOLE1
Department of Pharmaceutical Chemistry, Sinhgad Institute of Pharmacy, 45-1/2/3, Narhe, Pune - 411 041, India,
1Institute of Pharmaceutical Education and Research, Borgaon (Meghe), Wardha - 442 001, India

Sherje, et al.: Simultaneous Estimation of Lansoprazole and Domperidone in Capsules

Two simple, accurate and precise spectrophotometric methods have been developed for simultaneous determination of lansoprazole and domperidone in pharmaceutical dosage form. Method A involves formation of Q-absorbance equation at 256.0 nm (isosbestic point) and at 294.2 nm while method B is two wavelength method where 277.6 nm, 302.1 nm were selected as λ1 and λ2 for determination of lansoprazole and 231.3 nm, 292.0 nm were selected as λ1 and λ2 for determination of domperidone. Both the methods were validated statistically and recovery studies were carried out. The Beer's law limits for each drug individually and in mixture was within the concentration range of 5-50 µg/ml. Linearity of lansoprazole and domperidone were in the range of 24-36 µg/ml and 8-12 µg/ml, respectively. The proposed methods have been applied successfully to the analysis of the cited drugs either in pure form or in pharmaceutical formulations with good accuracy and precision. The method herein described can be employed for quality control and routine analysis of drugs in pharmaceutical formulations.

Key words: Lansoprazole, domperidone, spectrophotometry, simultaneous equation, formulation

Lansoprazole (LAN), chemically 2-[[3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridinyl] methyl] sulfinyl]-1H-benzimidazole is a proton pump inhibitor1-3. It is official in USP4 in which liquid chromatography is the method for assay. Other reports are available in the literature for determination of LAN from commercial dosage form and in biological samples including HPLC4-5, HPTLC6, LC-MS-MS7, spectrophotometry8-9. Domperidone (DOM), 5-chloro-1-[1,2,3-dihydro-2-oxo-1H-benzimidazol-2-yl][propyl]-4-piperidyl]-2,3-dihydro-1H-benzimidazol-2-one is a dopamine antagonist and indicated as antiemetic and antinauseant10. It is official in IP, BP and European Pharmacopoeia where non-aqueous titration is the official method11,12. Several methods are reported for determination of DOM individually or in combination with other drugs13-15. A fixed dose combination containing LAN and DOM is available commercially in the market as capsule dosage form and is indicated in acid related disorders. However there is no method reported for simultaneous estimation of these drugs in combined dosage form. Hence, an attempt has been made to develop simple, sensitive, accurate and
precise analytical methods. The present communication describes two simple spectrophotometric methods for simultaneous estimation of these drugs from their combined formulation.

Reference standard of LAN was obtained from Dr. Reddy’s Laboratories Ltd., Medak, India and DOM was obtained from Aurobindo Pharma Ltd., Hyderabad, India. All the reagents and chemicals were either of AR grade or spectroscopy grade. All the solutions were freshly prepared with double distilled water. Spectral absorbance measurements were made with Shimadzu UV-2401 double beam spectrophotometer with 1 cm matched quartz cell.

About 60 mg of LAN and 20 mg DOM were separately taken in a 100 ml volumetric flask, dissolved in a mixture of methanol and 0.1 M NaOH (70:30 v/v) and volume was made up to the mark. The standard stock solutions were further diluted separately to obtain a concentration of 30 μg/ml of LAN and 10 μg/ml of DOM. The resulting solutions were scanned in the range of 200-400 nm. The UV absorption overlain zero order spectrum for LAN and DOM is depicted in fig. 1. From the overlain spectra, the wavelengths 256.0 nm (isoabsorptive point) and 294.2 nm (λ_max of LAN) were selected for formation of Q-absorbance equation.

The standard stock solutions of these drugs were diluted to obtain a concentration range of 10-100 μg/ml and absorbances were measured at selected wavelengths. The concentrations of drugs against absorbance was plotted to obtain a calibration curve. Both the drugs obey Beer’s law individually and in mixture within the concentration range of 5-50 μg/ml. The absorptivity values (A 1%, 1 cm) of each drug at selected wavelengths were determined. The concentration of each drug in laboratory mixture was determined by substituting the absorbance and absorptivity values in the following equations,

\[C_x = \frac{(Q_m-Q_y/Qx-Qy)}{A/Ax} \times \frac{Qx}{Ax} \]

\[C_y = \frac{(Qm-Qx/Qy-Qx)}{A/Ay} \times \frac{Qy}{Ay} \]

where, \(C_x \) is the concentration of LAN, \(C_y \) is the concentration of DOM, \(Qm \) is the ratio of absorbance of sample at selected wavelengths, \(Qx \) is the ratio of absorptivity of LAN, \(Qy \) is the ratio of absorptivity of DOM, \(A_{x1} \) is A (1%, 1 cm) of LAN at 256.0 nm, \(A_{y1} \) is A (1%, 1 cm) of DOM at 256.0 nm.

The prior criteria for two wavelength method (method B) are existence of two such wavelengths where interfering component shows same absorbance whereas component of interest shows significant difference in absorbance. Based on this criterion, two wavelengths 277.6 nm and 302.1 nm were selected as \(\lambda_1 \) and \(\lambda_2 \) for estimation of LAN at which DOM shows same absorbance but LAN shows significant difference in absorbance. Similarly, wavelengths 231.3 nm and 292.0 nm were selected as \(\lambda_1 \) and \(\lambda_2 \) for estimation of DOM. For calibration curve, the standard stock solutions of these drugs were diluted in the concentration range of 10-100 μg/ml and absorbances were recorded at selected wavelengths. Both the drugs obey Beer’s law individually and in mixture within the concentration range of 5-50 μg/ml. From standard stock solutions five laboratory mixtures (samples) and one as standard were prepared containing 30 μg/ml of LAN and 10 μg/ml of DOM. The absorbance of the resulting solutions were measured at the selected wavelengths and concentration of each drug was determined using the following equation,

\[Cu = \frac{Au}{As} \times Cs/Cu \]

where, \(Cu \) is the concentration of unknown, \(Cs \) is the concentration of standard, \(Au \) is the absorbance of unknown, \(As \) is the absorbance of standard and \(d \) is the dilution factor.

For analysis of capsule formulation, twenty capsules (Leedom manufactured by Bestochem Formulation (I) Ltd. and Lans-DX manufactured by Zydus Recon Healthcare Ltd. India) were weighed, contents removed and finely powdered. For method A, quantity of powder equivalent to 30 mg of LAN and 10 mg of DOM was weighed accurately and to it 20 mg of pure DOM was added (standard addition method). The mixture was dissolved in solvent and filtered with 0.45 μm membrane filter paper. An aliquot of filtrate was pipetted and diluted to obtain concentrations...
30 μg/ml of LAN and 10 μg/ml of DOM. The absorbance of resulting solutions was measured at selected wavelengths. For method B, a calibration curve of seven mixed standards was prepared by plotting the concentrations of drugs against absorbance difference at selected wavelengths. A quantity of powder equivalent to 30 mg of LAN and 10 mg of DOM was weighed accurately, dissolved in solvent and filtered. The filtrate was diluted further to obtain a concentration of 30 μg/ml of LAN and 10 μg/ml of DOM. The absorbances of the resulting solutions were recorded at the selected wavelengths and concentration of each drug was obtained by extrapolating the absorbance value on standard calibration curve of mixed standards.

The recovery studies were carried out at different concentrations by spiking a known concentration of standard drug to the pre-analyzed sample and contents were reanalyzed by proposed methods. The results of marketed formulation analysis and recovery studies are depicted in Table 1. The methods were validated statistically as per ICH/USP guidelines for parameters like accuracy, precision, ruggedness, specificity, linearity and range (Table 2). Accuracy was ascertained on the basis of recovery studies. Precision was studied by analyzing five replicates of sample solutions and concentrations were calculated. Ruggedness was established by carrying out five replicates of sample solutions and concentrations were calculated. Specificity was ascertained by analyzing the solutions under different stress conditions like basic (0.1 N NaOH, 1.0 ml, 40°), oxidation (3% v/v H2O2, 1.0 ml, 40°), heat (60°) for 24 h. Linearity and range were determined by analyzing 80-120% of test concentrations of each drug.

In the proposed method for analysis of LAN and DOM in commercial formulation a mixture of methanol and 0.1 M NaOH is used as the solvent. The overlain spectrum of LAN and DOM does not give any suitable isoabsorptive point in a concentration proportion of 3:1 respectively whereas the overlain spectra of both drugs in 1:1 ratio (30 μg/ml of each drug) shows a reproducible isoabsorptive point at 256.0 nm. Hence standard addition technique was employed in order to bring a concentration ratio of 1:1 (30 μg/ml). Thus estimation of drugs by Q-absorbance equation method (method A) was carried out at 256.0 nm (λmax of LAN). Method B involves four wavelengths for estimation of two drugs. The wavelengths 277.6 nm and 302.1 nm were selected for estimation of LAN where DOM shows same absorbance but LAN shows significant difference in absorbance whereas 231.3 nm and 292.0 nm satisfies the criteria for estimation of DOM. The proposed methods were successfully used to estimate LAN and DOM.

| TABLE 1: RESULTS OF CAPSULE FORMULATION ANALYSIS AND RECOVERY STUDIES |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Method | Drug | Label claim (mg/capsule) | Amount found (mg) | % Drug found (Mean ± SD), n = 3 | % Recovery (Mean ± SD), n = 3 |
| A | LAN | 30 | 30.10 | 100.34 ± 0.5556 | 99.63 ± 0.6341 |
| | DOM | 10 | 10.00 | 100.02 ± 0.5699 | 99.85 ± 0.5489 |
| B | LAN | 30 | 29.86 | 99.55 ± 0.4903 | 99.61 ± 0.5435 |
| | DOM | 10 | 09.98 | 99.83 ± 0.7178 | 99.66 ± 0.4225 |

Method A is Q-absorbance method while method B is two wavelength method. Results are mean of three determinations (n = 3), SD is standard deviation, LAN denotes lansoprazole and DOM denotes domperidone.

| TABLE 2: OPTICAL CHARACTERISTICS AND VALIDATION OF THE PROPOSED METHODS |
|------------------|------------------|------------------|------------------|------------------|
| Parameters | Method A | Method B |
| | LAN | DOM | LAN | DOM |
| Linearity range (μg/ml) | 24-36 | 8-12 | 24-36 | 8-12 |
| Beer’s law limit (μg/ml) | 5-50 | 5-50 | 5-50 | 5-50 |
| Intercept | 0.043a, 0.0117b | 0.0234a, 0.0117b | 0.0018a, 0.0128b | 0.0138c, 0.022d |
| Slope | 0.0359a, 0.005b | 0.0136a, 0.004b | 0.0138c, 0.022d | 0.0138c, 0.022d |
| Correlation coefficient (r) | 0.9994a, 0.9985b | 0.9993a, 0.9972b | 0.9995c, 0.9997d | 0.9995c, 0.9997d |
| Accuracy (% Recovery) | 99.63 | 99.85 | 99.61 | 99.66 |
| Precision (RSD, n = 5) | 0.5565 | 0.5699 | 0.4903 | 0.7178 |
| Ruggedness (% Label claim, n = 3) | 99.73 | 99.59 | 100.08 | 99.85 |
| Inter-day | 99.98 | 100.34 | 99.85 | 100.30 |
| Different analyst | 99.79 | 99.70 | 100.08 | 99.78 |
| Specificity | Specific | Specific | Specific | Specific |

In the above table ‘a’ indicates results at 294.2 nm; ‘b’ at 256.0 nm; ‘c’ at 277.6 nm and 302.1 whereas, ‘d’ denotes results at 231.3 nm and 292.0 nm. Method A is Q-absorbance method while method B is two wavelength method. LAN is lansoprazole and DOM is domperidone, RSD is relative standard deviation.
DOM in marketed capsule formulation. The assay values were in good agreement with the corresponding labeled claim. The recovery studies show accuracy of the method. On observing the validation parameters both the methods were found to be accurate, precise and specific. Hence the methods can be employed for quality control and routine analysis of lansoprazole and domperidone in pharmaceutical formulations.

ACKNOWLEDGEMENTS

The authors thank Dr. Reddy’s Laboratories Ltd., Medak (A.P.) and Aurobindo Pharma Ltd., Hyderabad for providing the gift samples of lansoprazole and domperidone respectively. Authors are also thankful to Institute of Pharmaceutical Education and Research, Wardha for providing necessary facilities for the research work.

REFERENCES

Accepted 2 February 2008
Revised 2 August 2007
Received 16 December 2006

Novel 2-Pyrazoline Derivatives as Potential Antibacterial and Antifungal Agents

SUVARNA KINI* AND A. M. GANDHI

Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal - 576 104, India

Kini, et al.: 2-Pyrazoline Derivatives as Antibacterial and Antifungal Agents

The 1,3,5-trisubstituted-2-pyrazolines were synthesized by refluxing isoniazid with various substituted diarylchalcones in N,N-dimethylformamide at 120-140°C. The physical and spectral data such as M.P., Rf, elemental analysis, IR,