CONTENTS

REVIEW ARTICLES
Cholesterol Ester Transfer Protein: A Potential Target for the Treatment of Coronary Artery Disease
HARSHA PATEL, JIGNA SHAH, SUNITA PATEL AND I. S. ANAND 735-740

Properties and Formulation of Oral Drug Delivery Systems of Proteins
A. SEMALTY, MONA SEMALTY, R. SINGH, S. K. SARAF AND SHUBHINI SARAF 741-747

RESEARCH PAPERS
Fabrication and Evaluation of Asymmetric Membrane Osmotic Pump
C. S. CHAUHAN, M. S. RANAWAT AND P. K. CHOUDHURY 748-752

Studies of Disintegrant Properties of Seed Mucilage of Ocimum gratissimum
RAVIKUMAR, A. A. SHIRWAIR, ANNIE SHIRWAIR, S. LAKSHMIMA PRABU, R. MAHALAXMI, K. RAJENDRAN AND C. DINESH KUMAR 753-758

Simultaneous Spectroscopic Estimation of Ezetimibe and Simvastatin in Tablet Dosage forms
S. J. RAJPUT AND H. A. RAJ 759-762

Formulation and Optimization of Carbamazepine Floating Tablets
D. M. PATEL, N. M. PATEL, N. N. PANDYA AND P. D. JOGANI 763-767

Effects of Medicago sativa on Nephropathy in Diabetic Rats
M. S. MEHRANJANI, M. A. SHARIATZADEH, A. R. DESFULIAN, M. NOORI, M. H. ABNOSI AND Z. H. MOGHADAM 768-772

Development of Hospital Formulary for a Tertiary Care Teaching Hospital in South India
J. R. PATEL, B. N. SUHAGIA AND B. H. PATEL 844-846

Simultaneous Spectrophotometric Determination of Drotaverine Hydrochloride and Mefenamic Acid in Tablets
M. J. PATIL 827-831

Simultaneous Spectrophotometric Determination of Ezetimibe Using Hydrotropic Solubilization Phenomenon
R. K. MAHESHWARI, S. DESWAL, D. TIWARI, N. ALI, B. POTHEN AND S. JAIN 822-824

In Vivo Pharmacokinetic Studies of Prodrugs of Ibuprofen
ABHA DOSHI AND S. G. DESHPANDE 824-827

Simultaneous Estimation of Atorvastatin Calcium and Amlodipine Besylate from Tablets
P. MISHRA, ALKA GUPTA AND K. SHAH 831-833

Development and Validation of a Simultaneous HPTLC Method for the Estimation of Olmesartan medoxomil and Hydrochlorothiazide in Tablet Dosage Form
N. J. SHAH, B. N. SUHAGIA, R. R. SHAH AND N. M. PATEL 834-836

Orodispersible Tablets of Meloxicam using Disintegrant Blends for Improved Efficacy
P. V. SWAMY, S. H. AREEFULLA, S. B. SHIRSHAND, SMITHA GANDRA AND B. PRASHANTH 836-840

Spectrophotometric Method for Ondansetron Hydrochloride SRADHANJALI PATRA, A. A. CHOUHDHURY, R. K. KAR AND B. B. BARIK 840-841

HPTLC Determination of Artesunate as Bulk Drug and in Pharmaceutical Formulations
S. P. AGARWAL, A. ALI AND SHIPRA AHIJU 841-844

Simultaneous Spectrophotometric Estimation of Metformin and Repaglinide in a synthetic mixture
J. R. PATEL, B. N. SUHAGIA AND B. H. PATEL 844-846

Synthesis and Antiinflammatory Activity of Substituted (2-oxochohmen-3-yl) benzamides
V. M. JADADD, S. N. MAMLEDESAI, D. SATYANARAYANA AND S. SWAMY 846-849

Evaluation of Hepatoprotective Activity of Ethanol Extract of Ptrospermum acerifolium Ster Leaves
S. KARPAPE, G. VADNERKAR, DEEPTI JAIN AND S. JAIN 850-852

New Antithiaminic Agents: Synthesis and Evaluation of H1-Antithiaminic actions of 3-(N,N-Dialkylamino)alkyl-1,2,3,4-tetrahydro-(1H)-thioquinazolin-4(3H)-ones and Their o xo Analogues
M. B. RAJU, S. D. SINGH, A. RAGHU RAM RAO AND K. S. RAJAN 853-856

SHORT COMMUNICATIONS
Simultaneous Derivative and Multi-Component Spectrophotometric Determination of Drotaverine Hydrochloride and Mefenamic Acid in Tablets

Design and Synthesis of Substituted 2-Naphthoxyethylamines as Potential 5-HT1A Antagonists
URMILA J. JOSHI, R. K. DUBE, P. H. SHAH AND S. R. NAIK 814-816

Diuretic Activity of Lageneria siceraria Fruit Extracts in Rats
B. V. GHULE, M. H. GHANTE, P. G. YEOLE AND A. N. SAIJO 817-819

Determination of Racecadotril by HPLC in Capsules
S. L. PRABU, T. SINGH, A. JOSEPH, C. DINESH KUMAR AND A. SHIRWAIR 819-821

Novel Spectrophotometric Estimation of Frusemide Using
ABHA DOSHI AND S. G. DESHPANDE 824-827

Protective Effect of Tamardinus indica Linn Against Paracetamol-Induced Hepatotoxicity in Rats
B. P. PIMPLE, P. V. KADAM, N. S. BAGDUGAR, A. R. BAFNA AND M. J. PATIL 827-831
Two simple, rapid, accurate and economical methods have been developed for the simultaneous estimation of metformin and repaglinide in the synthetic mixture. The linearity was observed in the concentration range of 4-24 µg/ml for the both metformin and repaglinide. First method is based on the simultaneous equations, absorbances of both the drugs were determined at 240 nm (λ max of metformin) and at 291.5 nm (λ max of repaglinide). Metformin does not show any absorbance at 291.5 nm, hence its absorptivity was taken zero in the calculation. The method was validated in terms of accuracy (99.24±0.99, 100.98±0.89) and precision (intra-day variations 0.58-1.21, 2.12-3.12 and inter-day variations 0.62-1.42, 2.20-3.08). Second method is based on Q-absorbance ratio; absorbances of both the drugs were determined at 240 nm (λ max of metformin) and at isoabsorptive point (254.8 nm). Q-absorption ratio method was validated in terms of accuracy (98.57±1.05, 98.62±1.24) and precision (intra-day variations 0.45-1.74, 2.70-3.02 and inter-day variations 0.52-1.84, 2.79-3.16).

Acknowledgements

The authors are thankful to Professor S. Ahmad, Vice chancellor, Jamia Hamdard and to Skymax Laboratories Pvt. Ltd., Gujrat for providing samples of pure artesunate. S.P. Agarwal is grateful to All India Council for Technical Education for an Emeritus Fellowship. We are also thankful to (Ms.) Harrina Gonsalves for help in the preparation of manuscript.

References

Metformin Hydrochloride (MET) is a biguanide class of antidiabetic drug, chemically is N,N-dimethylimidodicarbonimidic diamide hydrochloride1-3,12. Repaglinide (REPA) is a meglitinide antidiabetic used for the treatment of type 2 diabetes mellitus, chemically is (+)-2-ethoxy-\(\alpha\)-[[((S)-\(\alpha\)-isobutyl-\(\alpha\)-piperidinobenzyl)carbamoyl]-\(p\)-toluicacids2,13-15.}

Shimadzu model 1601 double beam UV/Vis spectrophotometer with a pair of 10 mm matched quartz cells was used to measure absorbance of the resulting solutions. Sartorius CP224S analytical balance, an ultrasonicater (Frontline FS 4). MET and REPA were obtained from Restech Pharmaceutical, Ahmedabad and absolute alcohol from S. D. Fine Chemicals, Mumbai.

Standard MET and REPA stock solution of 100µg/ml concentration was prepared in absolute alcohol. The synthetic mixture of MET and REPA was prepared in the ratio of 1:1. MET and REPA powder (5 mg each) was accurately weighed and transferred to 50 ml volumetric flask. The content was mixed with 40 ml alcohol. Common excipients, which are used in the tablet formulation, were added in this mixture and sonicated for 20 min. This solution was filtered through the Whatman filter paper No. 41 and the residue was washed thoroughly with alcohol. The filtrate and washings were combined and diluted to the 50 ml with alcohol to get solution having MET (100 µg/ml) and REPA (100 µg/ml).

The standard stock solutions of MET and REPA were scanned in the range of 200 nm to 400 nm against absolute alcohol as a blank. Maximum absorbance was obtained at 240 nm and 291.5 nm for MET and REPA, respectively. Iso-absorptive point was found at 254.8 nm. A calibration curve was plotted over a concentration range 4-24 µg/ml for both MET and REPA. Absorbance of each solution was measured at the three wavelengths 240 nm, 291.5 nm and 254.8 nm. Calibration curves were constructed for MET and REPA by plotting absorbance versus concentrations at three wavelengths. Each reading was average of three determinations.

Accuracy was determined in term of percent recovery. The proposed method was applied to determine MET and REPA in the synthetic mixture. The recovery experiments were carried out in triplicate by spiking previously analyzed samples of the synthetic mixture with three different concentrations of standards. Precision was determined in term of intra-day and inter-day precision. The absorbance of final sample solution was measured against absolute alcohol as a blank at 240, 291.5 and 254.8 nm. The amount of MET and REPA were calculated using simultaneous equations as well as Q-absorbance ratio method.

Calibration curves for MET and REPA over concentration range of 4-24 µg/ml were plotted and molar absorptivity for both the compounds were calculated at three wavelengths 240 nm (\(\lambda\) max of MET), 254.8 nm (Isoabsorptive point) and 291.5 nm (\(\lambda\) max of REPA). MET did not show any absorbance at 291.5 nm, hence absorptivity of MET was taken zero in the calculation. The linearity of the calibration graphs was validated by the high value of correlation coefficients of the regression (Table 1). The criteria for obtaining maximum precision1, by simultaneous equations method, were calculated and found to be outside the range 0.1-2.0.

LOD for MET and REPA were found to be 0.38 µg/ml and 0.69 µg/ml, respectively while LOQ for MET and REPA were found to be 1.15 µg/ml and 2.08 µg/ml respectively by both the methods. These data show that both the methods are sensitive for the determination of MET and REPA.

The percent recoveries obtained were 99.24 to 101.23 and 100.98 to 101.08 for MET and REPA, respectively by simultaneous equation method; 98.05 to 99.05 and 98.62 to 99.12 for MET and REPA, respectively by Q-absorbance ratio method. The low value of SD
TABLE 1: SUMMARY OF VALIDATION PARAMETERS FOR SIMULTANEOUS EQUATION AND Q-ABSORPTION RATIO METHODS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>240 nm</th>
<th>291.5 nm</th>
<th>254.8 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REPA</td>
<td>MET</td>
<td>REPA</td>
</tr>
<tr>
<td>Beer’s limit (µg/ml)</td>
<td>4-24</td>
<td>4-24</td>
<td>4-24</td>
</tr>
<tr>
<td>Molar Absorptivity (lit/mole/cm)</td>
<td>10249</td>
<td>9904</td>
<td>3220</td>
</tr>
<tr>
<td>Sandell’s sensitivity (µg/ml/cm²/0.001)</td>
<td>0.0126</td>
<td>0.0459</td>
<td>0.1408</td>
</tr>
<tr>
<td>LOD (µg/ml)</td>
<td>0.378</td>
<td>0.686</td>
<td>1.206</td>
</tr>
<tr>
<td>LOQ (µg/ml)</td>
<td>1.146</td>
<td>2.081</td>
<td>3.98</td>
</tr>
<tr>
<td>Regression equation</td>
<td>y = 0.0806x + 0.0085</td>
<td>y = 0.0232x - 0.0205</td>
<td>y = 0.0066x + 0.0028</td>
</tr>
<tr>
<td>Correlation coefficient (r²)</td>
<td>0.9993</td>
<td>0.9980</td>
<td>0.9988</td>
</tr>
<tr>
<td>Precision</td>
<td>Intra-day</td>
<td>(n=5) (%CV)</td>
<td>0.58-1.21</td>
</tr>
<tr>
<td></td>
<td>Inter-day</td>
<td>(n=5) (%CV)</td>
<td>0.62-1.42</td>
</tr>
</tbody>
</table>

indicates that both the methods are accurate. The low % CV values of intra-day and inter-day variations reveal that the proposed methods are robust (Table 1).

In the simultaneous equation method concentration of MET and REPA in the synthetic mixture were found out by solving following equations: C_m = (A_1 ar_1 - a_m1 ar_2)/(a_m1 - a_r1) and C_r = (A_2 ar_2 - a_m2 ar_1)/(a_m2 - a_r1), where; C_m, C_r = concentration of MET and REPA in the sample solution, A_1, A_2 = absorbances of the sample solution at 240 nm and 291.5 nm, respectively, a_m1 and a_m2 = molar absorptivities of MET at 240 nm and 291.5 nm, respectively and a_r1 and a_r2 = molar absorptivities of REPA at 240 nm and 291.5 nm, respectively.

In the Q- absorbance ratio method concentration of MET and REPA in the sample solutions were calculated using equations C_{m2} = (Q_o - Q_r)/(Q_m - Q_r) = a_3/a_{m3} and C_{p2} = A_3/a_{p3} C_{m2}, where A_1 and A_3 are absorbances of sample solution at 240 nm and 254.8 nm; and a_{m3} and a_{s3} are molar absorptivity of MET and REPA at 254.8 nm; a_{m1} and a_{r1} are molar absorptivity of MET and REPA at 240 nm. Q_o = a_1/a_{s1}, Q_r = a_{m1}/a_{m3} and Q_{r} = a_3/a_{r3}.

The proposed validated methods were successfully applied to determine MET and REPA in the synthetic mixture. The % recoveries for MET and REPA obtained were 101.56±1.20, 101.00±1.53 by simultaneous equations method and 98.01±1.58, 98.15±1.63 by Q-absorption ratio method respectively. No interference of the excipients with the absorbance appeared; hence the proposed methods are applicable for the quantitative determination of MET and REPA in synthetic mixture.

REFERENCES

Accepted 23 December 2007
Revised 13 July 2007
Received 5 December 2005