Site Specific Delivery Systems for the Treatment of Periodontitis

SAMINA RAHMAN, ALKA AHUJA*, J. ALI AND R. K. KHAR
Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard,
Hamdard Nagar, New Delhi-110 062.

Periodontal diseases are conditions that affect the supporting structures of the teeth. Advances in understanding the etiology and pathogenesis of periodontitis have led to the development of a number of targeted systems for administration of drug into the periodontal pocket. This article reviews the various types of targeted delivery devices (both degradable and non-degradable), which deliver the therapeutic agents directly to the periodontal pocket. Improvement in clinical and microbiological parameters and reduction in dose have been reported with these systems.

Periodontis is an inflammatory disease of the supporting structures of the teeth namely periodontal ligament, cementum, alveolar bone and gingival tissues. The disease state is characterized by the destruction of the supporting collagen of the periodontium, resorption of the alveolar bone and formation of periodontal pockets due to migration of gingival epithelium along the tooth surface. Alveolar bone resorption and breakdown of the structural support system is followed eventually by tooth loss. The clinical signs of periodontal disease include swelling of the gingiva, bleeding upon probing and formation of periodontal pocket. This pocket provides an ideal environment for the growth of anaerobic pathogenic bacteria such as Actinobacillus actinomycetemcomitans, Bacteroides gingivalis, Bacteroides melaninogenicus subspecies intermedius, Porphyromonas gingivalis and Prevotella intermedia.

Periodontal pockets are easily accessible and are therefore a convenient site for localized drug delivery system, which could be inserted into the pocket. The basic goal of periodontal therapy is to remove the plaque deposits from the tooth surface and control the pathogenic bacteria to an acceptable level. With systemic antibiotic therapy there is considerable variability in the therapeutic activity due to such factors like poor absorption in the gastrointestinal tract, first pass metabolism, systemic distribution, bacterial sensitivity and resistance. Some studies also report poor results due to the fact that the active product does not reach an adequate concentration at the site of action and is not retained locally for a sufficient period of time. In fact systemic therapy dilutes antimicrobial agent several thousand folds before it reaches the diseased site, necessitating the ingestion of large doses. The increased toxic effects at these elevated dose levels make systemic administration unacceptable due to low benefit to risk ratio. These drawbacks can be markedly reduced if an antimicrobial agent to be used is applied locally, although unwanted effects such as gastrointestinal disturbances and development of antibiotic resistance cannot be totally ruled out. Concentration of drug in tissues can be enhanced incorporating the active agent into controlled release delivery system and placing them directly into the periodontal pocket.

A targeted or site specific delivery system aims at delivering the therapeutic agent at sufficient levels inside the pocket and at the same time minimizing the side effects associated with systemic drug administration. In spite of clinical success, the currently available controlled release formulations suffer from several disadvantages including:

1. Removal of the drug delivery system (formulated from non-biodegradable polymers) at the end of the treatment.

For correspondence
E-mail: alkaahuja@yahoo.com
2. Poor retention of the oil-based delivery systems in the periodontal pocket.

3. The risk of harmful effects on the periodontal tissues due to additives leached out from the polymeric drug delivery system.

Targeted drug delivery systems based on bioadhesive polymers have been widely investigated for use as intrapocket devices in the management of periodontal disease. These show good retention within the aqueous environment of periodontal pocket. A bioadhesive gel formulation based on 4% carbopol containing 1% clindamycin hydrochloride was evaluated in vivo on microbial flora of periodontal pockets deeper than 5 mm and significant reduction in microbial count was reported. Bioadhesive semi-solid systems based on hydroxy ethyl cellulose (HEC) and polyvinyl pyrrolidone were formulated and studied for release rate and it was observed that increased concentrations of HEC decreased the rate of release of tetracycline due to concomitant increase in product viscosity and subsequent decreased rate of penetration of dissolution fluid into the formulation. A bioadhesive delivery system based on copolymer of acrylic acid and poly (ethylene glycol) monomethyl ether monomethacrylate and containing metronidazole for local treatment of periodontitis is under investigation. Bioadhesive disks of cetyl pyridinium chloride were prepared using Bioadhesive polymers like sodium carboxy methyl cellulose DVP and hydroxy propyl methyl cellulose K4M. The purpose of designing the erodible disk was to obviate the need for removal of exhausted device. Brombeig et al. formulated a composite wafer that contained poly (lactic-co-glycolic acid) as the main bioerodible component and polymers like starch, sodium carboxy methyl cellulose in combination with silver nitrate served as adhesive coating to the teeth. Such an adhesion resulted in prolonged residence time of the wafer in the periodontal pocket.

Site specific delivery systems:

An intrapocket sustained release device is an ideal approach to achieve controlled delivery of antimicrobials at a desired site. Such a device should meet the following requirements:

1. It should release the therapeutic agent at sufficient levels over the required period of time.
2. The size of the intrapocket device should confirm well with the size and depth of the periodontal pocket.

3. It should be free from undesirable side effects.

4. The drug of choice should be highly specific against the pathogenic microorganisms and should not lead to the development of resistant strains.

5. The device should be such that it is readily acceptable by the patient. It is desirable to have a biodegradable drug delivery system thereby obviating the need to remove any undisintegrated device at the end of treatment.

6. It should not be bulky and should not be exposed beyond the gingival margin.

7. The device should allow easy insertion into the pocket with minimal pain and discomfort.

8. The device should allow the patient to follow the normal oral hygiene procedures such as tooth brushing.

The rate of release from the intrapocket device should be biphasic that is a higher rate of release initially to achieve the desired therapeutic level followed by a moderate release profile that maintains the therapeutic levels. Periodontal local delivery devices that have been fabricated for the targeted delivery of antimicrobial agents include fibers, strips and compacts, films and injectable systems (micro particles and gels).

Fibers:

Fibers used for the treatment of periodontitis can be categorized into two types, hollow fibers and monolithic fibers. Hollow fibers comprise of the reservoirs without rate control delivery filled with a therapeutic agent. In these the therapeutic agent is released simply by diffusion through the reservoir wall. Goodson's first delivery devices involved hollow fibers of cellulose acetate filled with tetracycline. Reduction in spirochete numbers and a reduction in clinical signs were produced by these fibers when placed into the periodontal pocket. However the hollow fiber system released the drug very rapidly and was not very successful at sustaining the drug release. Monolithic fibers were essentially developed to retard drug release. Monolithic fibers made of ethylene vinyl acetate loaded with 25% tetracycline hydrochloride were placed to fill the periodontal pocket of 10 patients, which was covered with a periodontal dressing. The average concentration of tetracycline in pocket after 10 days was 643 μg/ml and the total count of pocket microflora was depressed to a level near the limit of darkfield microscopy.
Strips and compacts:

Acrylic strips have been fabricated using a mixture of polymer, monomer and different concentrations of antimicrobial agent. The strips were fabricated either by solvent casting or pressure melt method. Strips containing tetracycline, metronidazole or chlorhexidine demonstrated a decrease in the number of motile rods, notably spirochetes18. In a later development, the evaluation of amoxicillin-clavulanic acid loaded acrylic strips is reported19. Highest level of antibacterial agent was released during the first 24 h period followed by release of therapeutic level of the drugs for a subsequent nine day period. Effect persisted even after 3 w of removal of the acrylic strips4.

Films:

Films of various polymers have been made for the controlled release of the therapeutic agents. Sustained release devices composed of crosslinked fish gelatin (byco protein) containing chlorhexidine diacetate or chlorhexidine hydrochloride have been developed by Steinberg et al.20 Films based on synthetic biodegradable polymers such as poly (lactide-co-glycolide) (PLGA) containing tetracycline have been developed for modulated release of the drug21. A different pharmaceutical approach for the delivery and the release of a drug in the periodontal pocket is a slab-like device13. The advantages of such a device include ease of insertion, dimensions that conform well with the dimensions of the pocket and minimum pain on insertion.

Injectable systems:

These systems allow easy application of the therapeutic agent using a syringe. They are also cost-saving. These can be grouped into following two categories:

Microparticles:

Microparticles based systems of biodegradable poly al-pha hydroxy acids such as poly lactide (PLA) or poly (lactide-co-glycolide) (PLGA) containing tetracycline have been designed for periodontal disease therapy22. PLGA microspheres containing minocycline have been formulated and have been used for the elimination of Porphyromonas gingivalis from periodontal pockets.

Gels:

Mucoadhesive, metronidazole containing gel systems designed for periodontal treatment and based on hydroxyethylcellulose, Carbopol 974 and Polycarbophil have been described23. The gel is applied subgingivally with the help of blunt cannula and syringe. The gel is only marginally effective in decreasing the anaerobic bacterial count. This may be due to low number of bacteria susceptible to metronidazole or due to the presence of bacterial biofilms. An injectable lipid-like vehicle based on glycerol mono-oleate and sesame oil containing 25% metronidazole (Elpyol) has become available with supportive evidence of efficacy. This product can be injected into the periodontal pocket where the thixotropic agent changes to gel24. Gel formulations of minocycline 2% are available under various trade names such as Periocline (Sunstar Company Limited, Osaka, Japan) and Dentomycin (Lederle Lab, U.K). Table 1 gives a list of different systems used as intrapocket devices.

In vitro evaluation of devices:

The in vitro characterization of an intrapocket device includes study of parameters such as general appearance and texture, dimensional variation, weight variation, content uniformity, surface pH, measurement of bioadhesion and in vitro dissolution profile47. Folding endurance and Percent-age elongation at break are evaluation parameters specific for film. Accurate evaluation and analysis of sustained release profile of an intra-pocket device requires proper design of an in vitro drug evaluation system7.

The in vitro characterization of a newly developed bioadhesive patch for controlled delivery via the buccal mucosa was investigated by Guo et al.48 They developed buccal patches of Carbopol 934P and studied the effect of different ratios of bioadhesive supporting polymers on the surface properties, adhesion and swelling of buccal patches. Various in vitro methods of evaluation are summarised in Table 2.

In vivo evaluation of devices:

The bioerodible polymer insert for the controlled release of metronidazole was evaluated in vivo using a rat model. Polymer implants containing 10% metronidazole were prepared from cellulose acetate phthalate/Pluronic L101 with 50/50 and 30/70 polymer blends ratios. In all in vivo experiments, no signs of adverse tissue reactions were detected. Based on these results prototype delivery inserts were designed and subsequently evaluated in volunteer patents. Preliminary results from this pilot study stated that the metronidazole concentration in Gingival Crevicular Fluid (GCF) was significant throughout the sampling period of 3 h and remained well above the Minimum Inhibitory Concentration (MIC) for most periodontal pathogens29.

A preliminary clinical study designed to test the performance of tetracycline-poly (lactide-co-glycolide) films in vivo
was performed using eight periodontal maintenance patients aged 35 to 65 y2. All patients had at least one probable, periodontal pocket measuring at least 5 mm in depth in each jaw quadrant that bled on gentle probing. None of the subjects had received periodontal maintenance therapy within the last six months. The periodontal pockets chosen as experimental sites were isolated with cotton rolls, rinsed and wiped of plaque and debris, and dried with cotton pellets and an air syringe. GCF was measured with a crevicular fluid strip and measuring instrument (Harco Electronics, Tustin, CA). Each subject received a film containing either 0% or 25% w/w tetracycline hydrochloride, which was inserted into one periodontal pocket located in each jaw quadrant. From the results of the in vivo evaluation, it was found that therapeutic drug concentration in excess of the MIC (8 μg/ml) was maintained in the GCF for a period of at least 14 d.

No evaluation of an intrapocket device is complete without a correlation between the release rate constant or some

<table>
<thead>
<tr>
<th>Drug(s)/Type of device</th>
<th>Fabrication Technique/Polymer</th>
<th>Product Name</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracycline microtubules</td>
<td>Microencapsulation, diacetylenic phosphatidyl cholines</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Tetracycline monolithic fiber</td>
<td>Melt extrusion, ethyl vinyl acetate copolymer</td>
<td>Actisite (Alza Corporation)</td>
<td>26-28, 17</td>
</tr>
<tr>
<td>Doxycycline gauze</td>
<td>Equilibration in drug solution, bioabsorbable dental materials</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Tetracycline, Chlorhexidine film</td>
<td>Cast from ethanol solutions, hydroxy propyl cellulose</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Tetracycline films, sponge gel</td>
<td>Cast from aqueous solution cross-linked with gluteraldehyde, Atelocollagen</td>
<td></td>
<td>31,32</td>
</tr>
<tr>
<td>Chlorhexidine, Tetracycline films</td>
<td>Cast from water-ethanol mixture crosslinked with gluteraldehyde, Byco protein</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Ofloxacin strip</td>
<td>Methacrylic acid particles dispersed in a HPC film, hydroxy propyl cellulose (HPC) methacrylic acid copolymeres</td>
<td>PT-01</td>
<td>33,34</td>
</tr>
<tr>
<td>Tetracycline, Metronidazole compacts</td>
<td>Direct compression, polyhydroxy-butryic, polyhydroxyvalerate, polyactic acid, polymers and copolymers</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Chlorhexidine gluconate inserts</td>
<td>Cross-linked hydrolyzed gelatin and glycerin</td>
<td>Periochip (Perio Products Ltd)</td>
<td>36</td>
</tr>
<tr>
<td>Tetracycline microcapsules</td>
<td>Solvent evaporation, lactic acid/glycolic acid copolymer</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Metronidazole lipid-like gel</td>
<td>Mixing, glycerylmonoleate/ sesame oil</td>
<td>Elyzol (Dumex - At Alpharma)</td>
<td>24,38</td>
</tr>
<tr>
<td>Clindamycin film</td>
<td>Cast from ethanol: water mixture, Eudragit L and Eudragit S</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Minocycline lipid-like gel</td>
<td>Mixing, Hydroxy ethyl cellulose, aminoalkyl methacrylate copolymer triacetin, magnesium chloride, glycerin</td>
<td>Dentomycin (Lederle Lab), Periocline (Sunstar Co. Ltd) Atrigel, Atridox (Atrix Lab)</td>
<td>40-43, 44-46</td>
</tr>
<tr>
<td>Doxycycline, tetracycline, sanguinarius liquid system</td>
<td>Poly (DL-lactide) dissolved in N-methyl-2-pyrrolidine (NMP), polylactic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug/Sustained release delivery system</td>
<td>Polymer</td>
<td>In vitro method</td>
<td>References</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Metronidazole bioerodible polymer insert</td>
<td>Blends of Cellulose acetate phthalate and Pluronic L101</td>
<td>Rotating-disk apparatus (modified Hannson dissolution apparatus with the paddles replaced by rotating sample holders) was used.</td>
<td>49</td>
</tr>
<tr>
<td>Salicylic acid, caffeine, tripelennamine film</td>
<td>Polyethylene glycol-ethyl cellulose</td>
<td>Membranes were attached to glass plates with a silicon pressure sensitive adhesive and release rate determined in 500 ml of buffer solution per heated to 37°C.</td>
<td>50</td>
</tr>
<tr>
<td>Chlorhexidine diacetate film</td>
<td>Ethyl cellulose</td>
<td>Two films were clamped between the compartments of dissembling dissolution cells containing solution warmed to 37°C.</td>
<td>51</td>
</tr>
<tr>
<td>Minocycline films</td>
<td>Ethyl cellulose</td>
<td>Films were shaken in orbital shaker using water as the elution medium.</td>
<td>52</td>
</tr>
<tr>
<td>Olofoxacin controlled release insert (PT-01)</td>
<td>Methacrylic acid copolymers (MACS), hydroxypropyl cellulose</td>
<td>Rotating basket method of the Pharmacopoeia of Japan was used. 500 ml of deaerated 12.5 mM phosphate buffer (pH 7.2) was used as the dissolution medium at 37°C.</td>
<td>33,34</td>
</tr>
<tr>
<td>Amoxycillin-clavulanic acid strips</td>
<td>Acrylate</td>
<td>Strips were incubated at 37°C in 3 ml distilled water contained in Bijoux bottles.</td>
<td>19</td>
</tr>
<tr>
<td>Tetracycline films</td>
<td>Poly (lactide-co-glycolide)</td>
<td>Differential dissolution studies were carried out in Kolthofs borax-phosphate buffer pH 7.3, contained in screw capped, 10 ml test tubes agitated at 1 rpm in a water bath at 37°C.</td>
<td>53</td>
</tr>
<tr>
<td>Amoxycillin trihydrate fibers</td>
<td>Poly vinyl acetate</td>
<td>Fiber was incubated at 37°C in 50 ml of isotonic phosphate buffer (pH 6.6) and agitated at 50 rpm in a shaking water bath.</td>
<td>54</td>
</tr>
<tr>
<td>Silver nitrate, benzyl penicillin, tetracycline composite wafers</td>
<td>Poly (lactide-co-glycolide), ethyl cellulose</td>
<td>Wafer was incubated at 37°C in a vial with 1 ml of deionized water/human serum and then continuously shaken at 250 rpm using a KS-10 orbital shaker (BEA-Enrotech Hyde Park, MA, USA). Adhesions was determined using freeze dried films and gels on fresh porcine buccal mucosa. The maximum force of detachment was measured on a texture analyzer (TA-XT2, Stable Microsystem)</td>
<td>12, 55</td>
</tr>
</tbody>
</table>

Chlorhexide gluconate gel film | Chitosan | | 56 |
| Cetyl pyridinium chloride disks | Sodium carboxy methyl cellulose DVP, hydroxy propyl cellulose K4M | The duration of bioadhesion was determined on a self designed flow through cell consisting of a cavity at the lower base for placement of bovine mucosal membrane and disk. Isotonic phosphate buffer of pH 6.6 simulating the salivary pH was pumped at a flow rate of 0.65 ml/min. Duration of bioadhesion was determined by measuring the time required for the formulation to erode completely. |

CONCLUSIONS

The controlled delivery devices are a useful adjunct to the conventional surgical or non-surgical treatments but are no substitute for these measures. Despite the number of delivery systems investigated for use in periodontal disease, an ideal targeted delivery system is yet to be developed. The greatest advantage associated with the use of intrapocket delivery systems has been that administration is less time consuming than mechanical debridement, and treatment does not rely, as heavily on patient compliance as is the case with conventional topical delivery systems such as sub-gingival irrigation. Also, the amount of drug required to achieve effective concentration in the GCF is considerably less than that required if the drug is delivered sistemically.

REFERENCES