
Spectrophotometric determination of Cimetidine in pure form and in dosage forms using Cu^{2+}

K. GIRISH KUMAR*, P.A. GUNACHITRA and I. ANITHA**
Dept. of Chemistry, Gandhigram Rural Institute, Gandhiagram - 624 302, Tamil Nadu
**Dept. of Chemistry, Govt. College, Chittur - 678 104, Kerala
Received 12 April 1996
Accepted 8 January 1997

A simple and selective spectrophotometric method has been developed for the determination of cimetidine in pure form and in dosage forms using Cu^{2+} solution.

CIMETIDINE is a highly effective drug for the treatment of duodenal ulcer and is a well-established H2 receptor. Nitrogen content determination by Kjeldaehe method1 is a widely used estimation method for cimetidine. In addition, spectrophotometric2,4 chromatographic5 and titrimetric methods6-9 are also available for the purpose.

Cimetidine forms a bright green complex with Cu^{2+} at a pH of 2-7. This property is exploited for developing an analytical method for the determination of pure cimetidine and five of its commercially available preparations. The method reported here is quite simple.

A Shimadzu UV-Visible Spectrophotometer with autocalculation provision is used for the analysis. Cimetidine sample was recrystallised from ethanol and its purity was confirmed by m.p. determination. The sample was made into a solution by dissolving a known mass of cimetidine (0.15 g) in water and the solution was diluted to a predetermined volume (250 ml). Five commercially available cimetidine tablets were taken for analysis. Tentablets of each type were weighed accurately. They were finely powdered and known mass (0.15 g) of the powder was dissolved in

*For correspondence
Table 1: Determination of Cimetidine (pure)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Cimetidine taken</th>
<th>Cu$^{2+}$ method</th>
<th>Recovery %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/ml</td>
<td>Cimetidine found</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mg/ml</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>0.096</td>
<td>0.095</td>
<td>98.9</td>
</tr>
<tr>
<td>2.</td>
<td>0.120</td>
<td>0.121</td>
<td>100.8</td>
</tr>
<tr>
<td>3.</td>
<td>0.144</td>
<td>0.145</td>
<td>100.6</td>
</tr>
<tr>
<td>4.</td>
<td>0.168</td>
<td>0.166</td>
<td>98.8</td>
</tr>
<tr>
<td>5.</td>
<td>0.192</td>
<td>0.190</td>
<td>98.9</td>
</tr>
<tr>
<td>6.</td>
<td>0.216</td>
<td>0.215</td>
<td>99.5</td>
</tr>
</tbody>
</table>

S.D. = 0.90, C.V. = 0.90%

Table 2: Determination of Cimetidine in dosage forms

<table>
<thead>
<tr>
<th>Tablet</th>
<th>Maker's specification</th>
<th>Cu$^{2+}$ method</th>
<th>KBrO$_3$ method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/tablet</td>
<td>Cimetidine found mg/tablet</td>
<td>C.V*</td>
</tr>
<tr>
<td>A</td>
<td>200</td>
<td>200</td>
<td>1.02</td>
</tr>
<tr>
<td>B</td>
<td>200</td>
<td>201</td>
<td>1.12</td>
</tr>
<tr>
<td>C</td>
<td>200</td>
<td>209</td>
<td>1.31</td>
</tr>
<tr>
<td>D</td>
<td>200</td>
<td>205</td>
<td>1.35</td>
</tr>
<tr>
<td>E</td>
<td>200</td>
<td>201</td>
<td>1.12</td>
</tr>
</tbody>
</table>

*Average of 10 replicates

To a measured volume (4-10) of the sample solution, 10 ml of CuSO$_4$.5H$_2$O (2% w/v) solution was added and the absorbance of the resulting green coloured solution was diluted quantitatively to 25 ml. The absorbance of each solution was determined at 325 nm against a reagent blank. By using the autocalculation facility the concentrations were determined.

Results of the determinations of pure cimetidine with Cu$^{2+}$ are presented in Table 1. Beer's law was found to be applicable in the range 2 x 10$^{-4}$ to 9 x 10$^{-3}$ molar concentrations of cimetidine and a molar absorptivity value of 9.29 x 101 lit mol$^{-1}$ cm$^{-1}$ was obtained with respect to cimetidine. The bright green coloured complex formed gave the same absorbance even after 24 hrs of mixing which indicated the highly stable nature of the complex in water. Effect of pH on absorption maxima was studied and it was found that the optimum pH range for the determination is 2-7.

Table 2 gives the results of the analysis of cimetidine tablets with Cu$^{2+}$ along with the results of the already established KBrO$_3$ method. A close
examination of table 1 and table 2 reveals that the present method is very accurate and precise, when compared with the KBrO₃ method. Tablet excipients such as starch, talc, magnesium stearate etc. did not interfere in the determinations.

Owing to the simplicity, non-requirement of pH control and ability to use aqueous solutions in the determinations combined with high accuracy and precision, the present method appears to be better than the methods reported in the literature.

ACKNOWLEDGEMENTS

The authors thank Dr. G. Karthikeyan, Professor and Head, Department of Chemistry, Gandhigram Rural Institute and Dr. P. Indrasenan, Professor of Chemistry, Kerala University for their encouragement and valuable suggestions.

REFERENCES

Biodegradable Microspheres of Gentamicin Sulphate

S. PANDEY, M. MAJUMDER, U.V. SINGH and N. UDUPA*
College of Pharmaceutical Sciences, KMC, Manipal - 576 119, Karnataka
Received 13 May 1996
Accepted 22 February 1997

Gentamicin sulphate loaded albumin, chitosan and poly(dl-lactide- co-glycolide) microspheres were prepared. The in vitro dissolution studies showed that the release could be controlled for 2 weeks by the vial method. The stability of the drug was better by encapsulation. The nasal absorption of the drug from these microspheres was about 60 percent.

In the recent years, extensive efforts are being made in various research laboratories for the development of novel and targeted drug delivery systems. The advantages of these newer systems include patient compliance, reduction in dose and frequency of dosage and reduction of first pass metabolism. Gentamicin sulphate (GS) is an aminoglycoside antibiotic. The drug profile is well

*For correspondence