ACKNOWLEDGEMENTS

We thank The Director and Prof. S. C. Chaturvedi, Head Department of Pharmacy, S.G.S.I.T.S. Indore.

REFERENCES


Spectrophotometric Determination of Fluoxetine Hydrochloride

K. SUJATHA*, K. CHITRA, P. ASHOK KUMAR, K. KIRANBABU AND J. VASANATHA.
Sri Ramachandra College of Pharmacy, Sri Ramachandra Medical College and Research Institute (DU), Porur, Chennai-600116.

Accepted 31 May 2004
Revised 19 February 2004
Received 24 February 2003

A new, simple, sensitive spectrophotometric method in ultraviolet region for the determination of fluoxetine hydrochloride in bulk and in dosage form. Fluoxetine hydrochloride shows maximum absorbance at 225 nm with apparent molar absorptivity of 1.2388×10⁴ l/mole.cm Beer's law was obeyed in the concentration range of 2.5-25 μg/ml. Results of the analysis were validated statistically and by recovery studies.

*For correspondence
E-mail: ulagaimano@yahoo.com

Indian Journal of Pharmaceutical Sciences

July - August 2004

457
TABLE 1: RESULTS OF ASSAY AND RECOVERY STUDIES

<table>
<thead>
<tr>
<th>Pharmaceutical Formulation</th>
<th>Label</th>
<th>Amount Found* (mg)</th>
<th>% Recovery</th>
<th>Standard Deviation</th>
<th>Co-efficient of variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prode (Sun Pharma)</td>
<td>20.02</td>
<td>100.1</td>
<td>100.2</td>
<td>0.0087</td>
<td>0.0430</td>
</tr>
<tr>
<td>Fludac (Cadila)</td>
<td>20.01</td>
<td>100.5</td>
<td>99.85</td>
<td>0.0150</td>
<td>0.0750</td>
</tr>
<tr>
<td>Platin (Eskay)</td>
<td>19.94</td>
<td>99.70</td>
<td>98.84</td>
<td>0.0291</td>
<td>0.1460</td>
</tr>
</tbody>
</table>

*Mean of five determinations.

Fluoxetine hydrochloride, chemically, N-methyl-3-pheny1-3-(a,a,a-trifluoro-p-tolloyl) propylamine hydrochloride, is an antidepressant drug. It is readily absorbed through the GI tract and exhibits antidepressant activity by selectively inhibiting the uptake of serotonin. It is official in United States Pharmacopoeia. Literature survey revealed that fluoxetine has been determined by HPLC, GC, fluorimetry and colorimetric methods but no UV Spectrophotometric method so far has been reported for its analysis. The present investigation reports a simple UV spectrophotometric method for the analysis of fluoxetine hydrochloride in bulk as well as from capsule dosage forms.

A Sysmex UV/Vis spectrophotometer-118 with 1 cm matched quartz cells was used. Pure fluoxetine hydrochloride was obtained as a gift sample from Micro Labs Ltd., Bangalore. The capsules were purchased from a local pharmacy. Fluoxetine hydrochloride (10 mg) was accurately weighed and dissolved in distilled water so as to give a stock solution of concentration of 1000 μg/mL. Aliquots of 100 μg/mL solution were transferred into six 10 ml volumetric flasks and volume was adjusted with distilled water to give final concentrations of 2.5, 5, 10, 15, 20 and 25 μg/mL. The absorbance was measured at 225 nm against distilled water as a blank.

The proposed method was applied to the analysis of commercially available fluoxetine hydrochloride capsule. A quantity of mixed contents of twenty capsules equivalent to 10 mg of fluoxetine was transferred into a 100 ml volumetric flask. A small quantity of distilled water was added and shaken well to dissolve the drug. It was made up to volume and the solution is filtered. The filtrate was further diluted with distilled water to 10 μg/ml concentration and the absorbance measured at 225 nm against distilled water as a blank.

Recovery studies were carried out by adding a known quantity of pure drug (1 mg/ml) to the pre-analyzed formulations and the proposed method was followed. From the amount of drug found, percentage recovery was calculated. The proposed method of determination of fluoxetine hydrochloride showed molar absorptivity of 1.2388×10^4 l/mole.cm and Sandell's sensitivity of 0.0279 μg/cm^2/0.001 absorbance unit. Linear regression of absorbance on concentration gave the equation y=0.0033+0.0354x with a correlation coefficient of 0.9992.

Relative standard deviation of 0.0009 was observed for analysis of five replicate samples, indicating precision and reproducibility. Fluoxetine hydrochloride exhibits its maximum absorption at 225 nm and obeyed Beer's law in the concentration range of 2.5-25 μg/ml. The results of analysis and recovery studies are presented in Table 1. The percentage recovery value 99.4% indicates that there is no interference from the excipients present in the formulation. The developed method was found to be sensitive, accurate, precise and reproducible and can be used for the routine quality control analysis of fluoxetine hydrochloride in bulk drug and formulations.

ACKNOWLEDGEMENTS

The authors are grateful to M/S. Micro Labs Ltd., Bangalore for providing authentic sample of fluoxetine hydrochloride.

REFERENCES

3) Risley, D.S., Peterson, J.A., Griffiths, K.L. and McCarthy, S. LC-
AntiHIV, Antibacterial and Antifungal Activities of Some 2,3-Disubstituted Quinazolin-4(3H)-ones

V. ALAGARSAMY, R. REVATHI, S. MEENA, K. V. RAMASESHU, S. RAJASEKARAN AND E. DE CLERCO

Medicinal Chemistry Laboratory, J. S. S College of Pharmacy, Mysore-570015.
1Department of Pharmaceutical Chemistry, Periyar College of Pharmaceutical Sciences, Trichy-620021.
2Department of Pharmaceutical Chemistry, K. M. College of Pharmacy, Madurai-625107.
3Rega Institute for Medical Research, Minderbroederstraat-10, Belgium.

Accepted 2 June 2004
Revised 19 February 2004
Received 8 July 2003

The title compounds 2-mercapto-3-(substitutedmethylamino) quinazolin-4(3H)-ones were synthesized by condensing the active hydrogen atom of 3-amino group of 3-amino-2-mercapto quinazolin-4(3H)-one with formaldehyde and the desired amines. Investigation of antimicrobial activity of the compounds was performed by agar dilution method against 6 pathogenic bacteria, 3 pathogenic fungi and antiHIV activity against replication of HIV-1 (III B) and HIV-2 (ROD) in MT-4 cells. The compounds exhibited significant antibacterial and antifungal activities.

Quinazolines and condensed quinazolines are reported to show a variety of biological activities, such as antibacterial1, antifungal2 and antiHIV3. Mannich bases are reported to possess potent antibacterial, antifungal and antiHIV activities4. In view of these facts and as a continuation of our earlier efforts carried out in our laboratory3,5, 2-mercapto-3-(substitutedmethylamino) quinazolin-4(3H)-ones were synthesized. The title compounds were synthesized by condensing the active hydrogen atom of 3-amino group of 3-amino-2-mercapto quinazolin-4(3H)-one with formaldehyde and the desired amines [Mannich reaction]. The starting material 3-amino-2-mercapto quinazolin-4(3H)-one was prepared from anthranolic acid using methods reported6 from our laboratory. The title compounds (fig.1) were screened for antibacterial, antifungal activity by agar dilution method and antiHIV activity against HIV-1(III B), HIV-2(ROD) in MT-4 cells.

Melting points were determined in open capillary tubes on a Thomas Hoover melting point apparatus and are uncorrected. IR spectra were recorded in KBr on a Perkin Elmer-841 grating spectrometer (cm\(^{-1}\)), Mass spectra on a Varian Atlas CH-7 mass spectrometer at 70 ev and NMR Spectra on a Varian A-60 or EM-360 spectrometer, using TMS as internal standard. Elemental analysis was performed on a Carlo Erba 1108 CHN analyzer.

The starting material, 3-amino-2-mercapto quinazolin-4(3H)-one was synthesized by the following method. To a vigorously stirred solution of methyl anthranilate (3.02 g, 0.02 mol) in dimethyl sulfoxide (10 ml) at room temperature, carbon disulphide (1.6 ml, 0.026 mol) and sodium hydroxide (1.2 ml, 20 mol) were added during 30 min. After 30 min, dimethyl sulfate (2.5 g, 0.02 mol) was added drop wise at 5-

*For correspondence
E-mail: Samy_veera@yahoo.com