ACKNOWLEDGEMENTS

Thanks are extended to The Principal, Govt. College of Pharmacy, Karad for their invaluable assistance and encouragement.

REFERENCES

1. Reynolds, J.E.F. and Prasad, B.A., Eds., In; Martindale-The

- Extra Pharmacopoeia, 31st Edn., The Pharmaceutical Press, London, 1996, 1069.
- Budavari, S., O' Neil, J.M., Smith, A. and Heckelman, E.P., In; The Merck Index, 11th Edn., Merck and Co. Inc., Whitehouse Station. NJ, 1989, 62.
- Shenoy, K.R.P., Krishnamurthy, K.S. and Iyengar V., Indian Drugs, 2001, 38, 428.
- Koundourellis, J.E., Mallion, E.T. and Broussali, T.A., J. Pharm. Biomed. Anal., 2000, 23, 469.

Antimicrobial activity of Dioscorea bulbifera bulbils

Y. N. SEETHARAM*, G. JYOTHISHWARAN, H. SUJEETH, A. BARAD, G. SHARANABASAPPA AND D. SHIVKUMAR.

Biosystematics and Medicinal Plants Laboratory,

Department of Botany, Gulbarga University, Gulbarga-585 106.

Accepted 24 October 2002 Revised 9 September 2002 Received 14 January 2002

The successive extracts of *Dioscorea bulbifera* (bulbils) has been investigated for *in vitro* antimicrobial activity against *Klebsiella pneumoniae, Escherichia coli, Bacillus aureus, Proteus vulgaris, Staphylococcus aureus, Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus and <i>Rhizopus nigricans*. The petroleum ether and chloroform extracts showed significant activity against *A. fumigatus* and *R. nigricans*. The petroleum ether and distilled water extract showed good activity against *K. pneumoniae*. The chloroform extract showed feeble activity against *S. aureus*.

Dioscorea bulbifera L. (Dioscoreaceae) is a climber widely distributed in India, Ceylon, Malay peninsula, Australia, E. Africa and Brazil. *D. bulbifera* is one of the major Indian medicinal plants used in the three indigenous systems of medicine¹. Traces of diosgenin (4%) are present in *D. bulbifera*^{2,3,4}. *D. bulbifera* has diuretic and antiinflammatory activity⁵. Sterols and diterpenoids have been reported from this plant⁸. This communication reports the antimicrobial activity of bulbils of *D. bulbifera*.

The plant was collected from Gulbarga University Campus, Gulbarga in January 2001 and authenticated at the Botany Department, Gulbarga University with the help of Flora of Gulbarga District⁷ where a voucher specimen is

deposited (Voucher No. HGUG-785). The bulbils were cut, shade dried and coarsely powdered. The powdered plant material was subjected for successive extraction with petroleum ether, chloroform, ethanol (95%) and distilled water using Soxhlet extractor. The extracts were concentrated to dryness *in vacuo*. Four milligrams of each extract is dissolved in 1 ml of distilled dimethylformamide. The antimicrobial activity was assayed by agar well diffusion method⁸. The *in vitro* screening was carried out using *Klebsiella pneumoniae*, *Escherichia coli*, *Bacillus aureus*, *Proteus vulgaris*, *Staphylococcus aureus*, *Aspergillus niger*, *Aspergillus flavus*, *Aspergillus fumigatus* and *Rhizopus nigricans*.

Streptomycin sulphate (4 mg/ml of distilled water) and nystatin (4 mg/ml of distilled water) was used as a standard for bacteria and fungi respectively. The petroleum ether extract showed significant activity against *A. fumigatus* (16.5

*For correspondence E-mail: shwaran@rediffmail.com

TABLE 1: IN VITRO ANTIMICROBIAL ACTIVITY OF DIOSCOREA BULBIFERA BULBILS.

Organisms	Zone of Inhibition (mm)*					
	1	2	3	4	5	6
Klebsiella pneumoniae	15.0±1.0	12.0±.03	12.0±.02	15.0±.02	16.0±0.1	ND
Escherchia coli	11.5±0.5	12.5±.02	12.5±.03	11.0±0.5	16.0±.15	ND
Bacillus aureus	15.0±1.0	13.5±0.4	13.5±0.1	15.5±.03	18.0±0.4	ND
Proteus vulgaris	13.5±0.5	13.0±.03	12.5±.04	14.0±.05	16.5±.03	ND
Staphylococcus aureus	12.5±.31	8.0±.03	13.5±.03	12.5±.40	16.5±.50	ND
Aspergillus niger	14.5±.20	15.0± .02	12.5±.03	13.5±.02	ND	16.0± 02
Aspergillus flavus	13.0±.10	15.0±.05	17.0±.05	13.0±1.0	ND	20.0±.20
Aspergillus fumigatus	16.5±.30	16.0±.40	11.5±.31	12.0±.40	ND	16.0±.03
Rhizopus nigricans	20.5±.20	21.5±.10	14.5±.10	18.5±.31	ND	20.0±.05

^{*}All the values are mean±standard deviation of 3 determinations. 1. Petroleum ether extract; 2. Chloroform extract; 3. Ethanolic extract; 4. Distilled water extract (4 mg/ml dimethylformamide); 5. Strept-streptomycin sulphate (1mg/ml of distilled water); 6. Nyst-nystatin (1mg/ml of distilled water); ND, Not done.

mm) and *R. nigricans* (20.5 mm). The chloroform extract showed marked activity against *A. fumigatus* (16.0 mm) and *R. nigricans* (21.5 mm) equating to the standard. Petroleum ether and distilled water showed good activity against *K. pneumoniae* (15.0 mm and 15.0 mm, respectively). The chloroform extract showed feeble activity against *S. aureus* (8.0 mm). In spite of tremendous development in the field of synthetic drugs during recent era, higher plants still hold their own place as of a source of several effective drugs in place of synthetics, which have severe side effects. Therefore, a systematic approach should be made to find out the efficacy of plants against pathogenic microorganisms so as to exploit them as herbal antimicrobial agents.

ACKNOWLEDGEMENTS

One of the authors, G. Jyothishwaran is grateful to The Council of Scientific and Industrial Research, New Delhi, for the award of a Junior Research Fellowship. The authors

thank Dr. G. M. Vidyasagar for providing technical assistance.

REFERENCES

- 1. Kamboj, V.P., Current Sci., 2000, 78, 35.
- Coursey, D.G., In; Simmonds, N.W., Eds., Evolution of Crop Plants, Longman publishing company, London, 1976, 70. 3.
 Quigley, F.R., Planta Med., 1978, 33, 414.
- Kokate, C.K., Purohit, A.P. and Gokhale, S.B., In ; Pharmacognosy, 12th Edn., Nirali Prakashan, Pune, 1999, 45.
- Dhawan, B.N., Patnaik, G.K., Rastogi, R.P., Singh, K.K. and Tandon, J.S., Indian J. Exp. Biol., 1977, 15, 208.
- Seetharam, Y.N., Kotresha, K. and Uplaonkar, S.B., In; Flora of Gulbarga District, Gulbarga University, Gulbarga, 2000, 60.
- 7. Murray, R.D.H., Jorge, Z.D., Kahn, N.H., Shahijahan, N. and Quaisuddin, M., Phytochemistry, 1984, 23, 623.
- Ashworth, J., Hargreares, L.L., Rosser, A. and Javis, B., In; Some Methods for Microbiological Assay, Academic Press, London, 1975, 75.