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A wide range of experimental and observational studies have established the irrefutable role of oxidative 
stress in the pathogenesis of a plethora of diseases either directly or indirectly. Several factors ranging 
from radiation, pollution, high fat and sugar diet, alcohol consumption, smoking, tobacco consumption 
and even certain drugs contribute to oxidative stress. The imbalance between oxidant and antioxidant 
levels remain the underlying cause of oxidative stress. When the levels of oxidants outweigh the levels 
of antioxidants it leads to formation of free radicals like hydroxyl, superoxide, alkoxyl, peroxyl, 
glutathiyl, tocopheroxyl, hydroperoxyl and ascorbate. These free radical species play a definitive role in 
the pathogenesis of neurological diseases, malignancies, cardiovascular, respiratory and liver diseases. 
Nuclear factor erythroid-2-related factor 2 is a master transcription factor belonging to the leucine zipper 
family. Kelch-like ECH-associated protein 1 is a repressor of nuclear factor erythroid-2-related factor  
2 under basal or normal conditions, which is responsible for cytoplasmic sequestration and proteosomal 
degradation of nuclear factor erythroid-2-related factor 2 via ubiquitination. The activation of nuclear 
factor erythroid-2-related factor 2/Kelch-like ECH-associated protein 1/antioxidant response element 
signalling pathway regulates the expression of numbers of genes that are cytoprotective, antioxidative and 
detoxificative in action. This article reviews the potential therapeutic role of nuclear factor erythroid-2-
related factor 2 activators in prevention and treatment of those diseases in which oxidative stress plays a 
definitive role in the pathogenesis.
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Oxidative stress (OS) plays a major role in the development 
and progression of a wide range of diseases including 
Alzheimer disease, cancer, atherosclerosis[1], chronic 
kidney disease[2], multiple sclerosis, Niemann-Pick C, 
Parkinson’s disease, Friedreich’s ataxia, Huntington’s 
disease (HD), infantile neuroaxonal degeneration, 
neurodegeneration with brain iron accumulation 
(NBIA) and lipid metabolism deregulation syndrome 
like Zellweger syndrome[3]. An assumption also exists 
currently that OS could cause cancer in patients with 
Type 2 Diabetes Mellitus (T2DM)[4,5]. The neurons and 
oligodendrocytes of the central nervous system are 
particularly more susceptible to OS[6]. Reactive Oxygen 
Species (ROS) include free radicals such as superoxide 
(•O2

-), peroxyl (•RO2), hydroxyl (•OH), hydroperoxyl 
(HRO2), and nonradical species such as hydrochlorous 
acid (HOCl) and hydrogen peroxide (H2O2)

[7]. ROS 
are the small oxygen-containing end-products of 
aerobic metabolism, which are highly reactive[8]. The 

increase in the level of these species often disrupt the 
normal oxidative-redox system[9]. In the recent times 
several works have reported the relationship between 
the nuclear factor E2-related factor 2 (Nrf2) and  
OS[10-13]. Nrf2, a nuclear transcriptional factor is 
observed to show a protective role in cell defence and 
survival against xenobiotics and OS[14] via the control 
and regulation of the production of number of genes 
and enzymes that function as antioxidants. Some of the 
antioxidant enzymes produced through the activation 
of Nrf2 are, superoxide dismutase (SOD), sulfiredoxin 
(Srx), peroxiredoxin (Prx), GSH peroxidase (GPx) and 
sestrin2 (Sesn2), which are involved in catabolism of 
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free radicals into hydrogen peroxide, which is further 
broken down into water and oxygen by the enzyme 
catalase. Nrf2 also regulates the synthesis of GSH 
with glutamate-cysteine ligase modifier (GCLM) 
subunit and glutamate-cysteine ligase catalytic subunit 
(GCLC). Nrf2 also increases the redox cysteine/
glutamate transport and peroxidase, which is a 
hemoprotein that uses hydrogen peroxide to oxidize 
a number of substrates.  Nrf2 also regulates the levels 
of catalase, a major defence enzyme against OS which 
is responsible for conversion of hydrogen peroxide 
into water and oxygen, and NADPH production by 
glucose-6-phosphate dehydrogenase (G6PD) and 
6-phosphogluconate dehydrogenase (6PGD). Nrf2 
also augments the activity of stress response proteins, 
such as heme oxygenase-1 (HO-1), which affects a 
variety of cellular functions and upregulation of metal 
chelators, metallothionein1/2 (MT1/2) and ferritin. 
Non-enzymatic antioxidants like NAD(P)H quinone 
oxoreductase (NQO1), GPx, glutathione S-transferase, 
and thiols are also upregulated by Nrf2[2,15,16]. It is clear 
that Nrf2 plays a role in protecting cells against OS and 
this property of Nrf2 makes it an interesting target in 
several diseases where OS plays a significant role in 
pathogenesis. 

Overview of NRF2- Kelch-like ECH-associated 
protein 1 (Keap1): 

Nrf2 is a master transcription factor belonging to 
the leucine zipper family[17]. It contains a basic 
leucine-zipper (bZip) domain at the C-terminus and 
participates in the formation of heterodimers with other 

bZip proteins like muscle aponeurosis fibromatosis  
(MAF)[18]. Under normal conditions Keap1, a 
cytoplasmic protein associated with the Cullin3 (Cul3) 
based E3 ligase complex, binds to Nrf2 leading to 
proteosomal degradation of Nrf2 via ubquitination[19,20]. 
Nrf2 consists of 6 highly conserved homology domains 
named Neh1 to Neh6 (Nrf2-ECH homology). Among 
all, in fibroblasts, Neh2 is a dependent transactivation 
domain and Neh4 and Neh5 are 2 independent 
activation domains[21]. Keap1 and β-transducin repeats-
containing proteins (β-TrCP) are E3 ubiquitin ligase 
adaptor proteins that regulates Nrf2 intracellularly 
by association with its two degradation domains, 
Neh2 and Neh6[22]. Cytoplasmic localization of Nrf2 
is determined by Neh2, recruitment of transcription 
factors and other canonical protein needed for gene 
expression are determined by Neh4 and Neh5. Kelch 
domain and the bric-a-brac, tram track, broad-complex 
(BTB) domain are the two domains of Keap1. Kelch 
binds to actin thereby tie the Keap1-Nrf2 complex to the 
cytoskeleton and BTB is important for Keap1-protein 
dimerization[23]. The conformational modifications 
by ectopic and endogenous electrophiles (residues 
C151, C273 and C288) from the sulfhydryl groups 
of Keap1 allow Nrf2 to escape Keap1-dependent 
degradation. Thus, Nrf2 accumulates in the nucleus 
and activates ARE-genes. On the other hand, β-TrCP, 
which is a homodimeric E3 ligase adapter also signals 
Nrf2 modification via phosphorylation by glycogen 
synthase kinase-3 (GSK-3) that promotes proteasomal 
degradation. Therefore, GSK-3/β-TrCP also serves as a 
potential target to increase the activity of Nrf2[24,25]

Fig. 1: Mechanism of Nrf2 activators
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Mechanism of action of nrf2 activators: 

Several mechanisms have been proposed for activation 
of Nrf2 at the molecular level. One hypothesis is that 
activation of PI3K/PKB (Akt) signalling leads to 
phosphorylation of Nrf2 by glycogen synthase kinase 
3β.  Akt, a downstream target of PI3K prevents cells 
form undergoing apoptosis. Another hypothesis is 
that the degradation of Nrf2 is regulated by a protein 
called Keap1. The binding of keap1 to Nrf2 leads to 
proteasomal degradation of Nrf2.  Disruption of this 
complex via modification of cysteine residues within 
the Keap1 destabilizes the Nrf2–Keap1 complex 
thereby allowing the free translocation and nuclear 
accumulation of Nrf2. Nrf2 once inside the nucleus 
binds to ARE and activates the transcription of 
cytoprotective genes[26-29].

Diseases-related OS: 

An overproduction of ROS and the deficiency in the 
levels of antioxidants leads to OS (fig. 2)[30]. In alcohol 
abuse, there is a surge in OS markers and increase 
in lipid peroxidation products (F2-isoprostane and 
4-hydroxy-2-nonenal) but depletion of antioxidants 
like glutathione (GSH) and vitamins E and C (fig. 3). 
In hepatitis, hepatocellular and cholestatic dysfunction, 
DNA damage, lipid damage and mitochondrial 
dysfunction occurs as a result of OS (fig. 4). In renal 
disease like CKD, end-stage renal disease and chronic 
inflammation, there is an impairment of activation of 
Nrf2 and diminished antioxidant defence (fig 4)[31]. In 
T2DM the Nrf2 induction suppressed the formation 
of DNA adducts via ROS-induction, intracellular 
ROS formation, apoptosis of pancreatic β-cells within 
the islets as well as a reduction in inflammation via 
NFκB pathways. Fig. 5 denotes the role of ROS and 

the effects of Nrf2 activation in regulation of OS in 
T2DM[32]. ROS has also been reported to increase 
apoptosis in Sertoli cells by decreasing the expression 
of blood-testis barrier (occludin, N-cadherin, zonula 
occludens-1 and β-catenin) and disordering the F-actin 
spatial arrangement. This is believed to be because of 
the upregulation of Jun N-terminal (JNK), extracellular 
signal regulatory kinase (ERK), p38 mitogen-activated 
protein kinase (MAPK) and downregulation of Nrf2. 
This, indicates that ROS-MAPK-Nrf2 is involved in 
spermatogenesis dysfunction[33]. A similar study on 
prepubertal testicular injury has suggested the role 
of OS increase through inhibition of Nrf2-mediated 
antioxidant signalling pathway[34].

In AD, OS and cytotoxicity via the alteration of 
mitochondrial membrane potential by amyloid beta 
(Aβ), and the complex of Aβ42 and copper (I) ion 
leads to reduced oxygen level and generation of 
H2O2. Interestingly, the study of AD using Drosophila 
model showed that there was a decrease in the level of 
Aβ42 peptide levels upon down regulation of Keap1, 
suggesting that reducing the activity of Keap1 may 
clear Aβ42 peptide via protein degradation. In PD, 
aggregation of α-synuclein protein, loss of function 
of parkin protein and mutation of DJ-1 are known to 
play a major role in the generation of OS[35,36]. In case 
of HD, OS results due to the effect of mutant huntingtin 
(mHtt) that disrupts the Nrf2 signalling pathway[37]. 
Examples of agents that help in combating OS via 
the activation of Nrf2 by persulfidation of Keap1 
are S-1-propenylmercaptocysteine (CySSPe) and 
N-acetylcysteine. CySSPe was reported to increase 
hydrogen sulfide (H2S) production that persulfidates 
keap1, enhance the cellular production of GSH and 
improve GSH:GSSG ratio[38].  N-acetylcysteine is 

 
Fig. 2: Oxidative stress due to decreased antioxidants and increased oxidants
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a pro-drug that is widely used as an antidote against 
acetaminophen overdose. It is a cysteine derivative and 
a direct precursor of GSH with beneficial effects in OS-
related diseases caused by pesticides[39].

NRF2 activators: 

The current consensus is that Nrf2 activators stabilize 
and promote Nrf2 translocation by inhibiting Keap1 
from binding to Nrf2. Nrf2, on translocation into 

the nucleus leads to production of antioxidant and 
antiinflammatory substances that decrease OS and 
inflammation[40]. A few examples of Nrf2 activators are 
oleanolic acids (OAs), bardoxolone methyl, dimethyl 
fumarate (DMF) and sulforaphane (SFN), calastrol, 
ellagic acid, zerumbone, curcumin, quercetin, quercitrin, 
resveratrol, phenethyl isothiocyante (PEITC), lucidone, 
forsythoside B and thymoquinone. Fig. 6 represents the 
chemopreventive/chemoprotective natural products 

 
FIG. 3: The increased and decreased in bio markers in alcohol abuse leading to oxidative stress

Fig. 4: Impairment of liver and kidney function as a result of oxidative stress
Impairment of liver function in hepatitis, hepatocellular and cholestatic dysfunction and kidney function during CKD and end-
stage renal disease and chronic inflammation as a result of oxidative stress
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and their effects upon Nrf2 activation[41,42]. Dimethyl 
fumarate (DMF) has been reported to activate Nrf2 
and increase its activity in neuronal subpopulations but 

not in astrocytic cells[43,44]. The activation of Nrf2 by a 
bioactive compound, salvianolic acid B (SalB) has been 
reported to protect dopaminergic neurons in PD via the 

Fig. 5: Role of increased oxidative stress in T2DM

Fig. 6: Chemopreventive/chemoprotective natural products and their effects upon Nrf2 activation
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inactivation of microglia-mediated inflammation and 
through induction of astrocyte activation-dependent 
GDNF expression[45]. Similarly, in a rat PD model 
with severe OS induced by 6-hydroxydopamine 
(6-OHDA) pre-treatment with phloroglucinol, a 
polyphenol salvaged the decrease in Nrf2 and p-Nrf2 
in the nuclear fraction[46]. In a similar study in a rat PD 
model with OHDA as an inducing agent, icariin targets 
Nrf2 signalling by inhibition of microglia-mediated 
neuroinflammation[47]. Nrf2 plays an vital role in 
maintaining newly generated hepatocytes during liver 
repair[48,49]. Activation of Nrf2 by pre-treatment with 
resveratrol in mice heart has been reported to alleviate 
the levels of mitochondrial ROS production induced 
by lipopolysaccharide in cardiomyocytes[50]. In another 
study, pre-incubation of Sertoli cells with luteolin, a 
natural flavonoid, induced the expression of antioxidant 
enzymes and increased ARE-luciferase reporter activity 
via triggering Nrf2 translocation[51]. In case of mice 
with transverse aortic arch constriction (TAC) model 
with maladaptive cardiac remodelling and dysfunction, 
dihydro-CDDO-trifluoroethyl amide (dh404) up-
regulates myocardial Nrf2 protein expression and 
inhibit cardiomyocyte hypertrophy and proliferation 
of cardiac fibroblast in chronic pressure overload, 
heart failure and maladaptive cardiac remodelling 
and dysfunction[52]. Sulforaphane, the most abundant 
isothiocyanate has been reported to alleviate or retard 
the ischemia-reperfusion induced retinal damage and 
grape seed proanthocyanidin has been shown to have 
a protective role in diabetic bladder dysfunction via the 
activation of Nrf2/HO-1 pathway[53,54]. Sulforaphane has 
also been reported to inhibit HIV infection in primary 
macrophages by reducing the activity of luciferase 

enzyme and increase the expression of Nrf2[55]. In a 
study conducted by Jazwa et al. the activation of Nrf2 
by sulforaphane (SFN) in rats with methyl-4-phenyl-
1-2-3-6-tetrahydropyridine (MPTP)-induced PD 
elevates Nrf2 levels in the basal ganglia and a further 
increase in phase II antioxidant enzymes, HO-1 and 
NQO1[56]. However, the above results with SFN results 
were contradicted in clinical studies[41]. Synthetic 
triterpenoid CDDO-MA activates Nrf2 in wild type 
mouse embryonic fibroblasts by blocking t-butyl 
hydroperoxide that induce the production of ROS 
(fig. 7)[57]. According to a study in RAW264.7 cells, 
curcumin upon activation of Nrf2-Keap1 pathway, 
leads to an increase in activity of antioxidant enzymes 
and showed a bifunctional activity i.e., lowering the 
ROS production at a lower dose (5μM) and middle-dose 
(10μM) whereas it intensified the production of ROS 
at a high-dose (20 μM)[58]. Nrf2 can also be activated 
via Ceramide-PKCζ-casein kinase 2 signaling pathway 
that upregulate antioxidant enzymes in the brain[59]. 
The activation of Nrf2 prevents the transcription 
of proinflammatory mediators such as TNF-α, 
interleukin-1 (IL-1), inducible nitric oxide synthase 
(iNOS), interleukin-6 (IL-6), cyclooxygenase-2  
(COX-2) and intracellular adhesion molecule  
(ICAM)[60]. 

The controversial role of NRF2: 

Nrf2 is reported to play a crucial role in human 
carcinogenesis. It has been reported that lung cancer 
and non-small cell lung cancer (NSCLC) results 
due to the activation of MEK1/2-ERK1/2-induced 
apoptosis pathway in endoplasmic reticulum (ER) 
stress via the activation of unfolded protein response 

Fig. 7: Activation of Nrf2 by synthetic triterpenoid CDDO-MA
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(UPR). Gall bladder cancer is reported to be caused 
due to the mutations in Keap1 that leads to the 
nuclear accumulation of Nrf2 leading to a surge in 
the expression and activity of genes like NQO1 and 
GST in the case of Keap1-mutated lung tumors[61,62]. 
In a similar study in NSCLC, by using a combination 
of erastin and acetaminophen, the regulation of Nrf2/
HO-1 signalling pathways has led to ferroptosis due 
to the overgeneration of lipid peroxidation[63,64].  In a 
study on head and neck cancer (HNC) using HNC cell 
lines, it was found out that the overexpression of Nrf2 
leads to chemoresistance of HN3 cells to Glutathione 
peroxidase 4 (GPX4)-inhibitor, RSL3[65]. Similarly, 
increased nuclear expression of Nrf2 and decreased 
cytoplasmic expression of Keap1 has been reported in a 
study conducted among Uighur women associated with 
cervical squamous cell carcinoma (CSCC) and cervical 
intraepithelial neoplasia (CIN) due to hypermethylation 
of CpG islands in the Keap1 gene promoter and further 
suggested that in cervical cancer tissues epigenetic 
changes regulate Keap1 expression[66]. These evidences 
highlights the controversial role of Nrf2 in cancer as 
it shows protective action in normal and pre-malignant 
tissues against cancer initiation and progression whereas 
it enhances the growth of malignant cells [67]. Similarly, 
in myeloid cells of mice where a high expression of 
Nrf2 occurs specifically in neutrophils, Nrf2 showed a 
positive effect in chronic colitis whereas, aggravation 
of the diseases occurs in acute colitis. These leads to a 
conclusion that the beneficial effects of Nrf2 activation 
depends on the organ affected, duration of inflammation, 
stage of the disease and injury model[68-71]. 

Conclusion and future perspectives:

ROS are derived mainly from mitochondria. So 
mitochondrial dysfunctions are often associated with 
neurodegenerative diseases such as AD, PD, HD and 
amyotrophic lateral sclerosis. In vivo and in vitro data 
have identified that phytochemicals can defend cells 
against OS-induced cellular damage through activation 
of Nrf2.  This suggests that potential therapeutic 
targeting of Nrf2 could be beneficial for patients 
associated with neurodegenerative diseases. The 
role of Nrf2 in cancer is controversial and therefore 
thorough studies are required to establish the exact 
role of Nrf2 in pathogenesis of cancer. Nrf2 activators 
can play a beneficial therapeutic role in prevention and 
treatment of diseases associated with OS and in cancer 
and compounds that inhibit Nrf2 could play a role in 
chemotherapy of cancer.
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