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In order to understand the basic mechanism of brain diseases, autoregressive model coefficients, frequency 
band energy, approximate entropy, and Lempel-Ziv complexity of magnetoencephalographic signals of 
schizophrenia were extracted as features. Distance criterion and Plus-L Minus-R algorithm were used to 
screen channels, back propagation neural network and support vector machine were applied to distinguish 
magnetoencephalographic signals of schizophrenic and normal people, and genetic algorithm was adopted 
to select features with significant differences. Finally, electroencephalography experiments were designed 
based on steady-state visual evoked potentials, and electroencephalographic signals of multiple subjects 
were collected. The collected signals were analysed using discrete Fourier transform, canonical correlation 
analysis and multivariable synchronization index analysis methods. The results showed that the correct 
classification rates of schizophrenic and normal people were 96.25 and 98.75 %, respectively. The correct 
classification rates of back propagation neural network and support vector machine were 98.5 and 99.75 %, 
respectively. Signal energy, correlation coefficient and synchronization index were the highest at the target 
stimulus frequency. The in-depth study of brain signals in patients with schizophrenia provided a reference 
for clinical diagnosis.
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Electroencephalography (EEG) is the discharge 
activity of brain neurons recorded by scalp electrodes. 
EEG signals indicate the change of voltage difference 
between two different locations of the brain over time. 
EEG is often used in the diagnosis and monitoring of 
epilepsy, and can also be used to analyse other diseases, 
such as Alzheimer's disease, schizophrenia and so on[1]. 
Magnetoencephalography (MEG) is a non-invasive 
technique for detecting brain function. It can detect 
the magnetic field produced by nerve current in the 
brain. It is another study of brain function and clinical 
application developed after EEG[2]. Schizophrenia is a 
serious and persistent mental illness, which affects 0.4-
0.6 % of the world's population. Most of the patients 
are in post-adolescence or early adulthood[3].

In recent years, more and more scholars have devoted 
themselves to the study of schizophrenia. Huang et al. 
have designed a simple choice task. The subjects need 
to predict 500 random left-or right-facing stimuli. 
By analysing the mutual information and crossover 
mutual information of the binary response signals of 
the subjects, it was found that the response sequences 
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produced by the patients with schizophrenia show 
stronger interdependence[4]. Schizophrenic patients 
lack synchronous alternation ability in completing 
memory tasks. There are differences in brain activity 
between patients and normal people in frontal and 
temporal lobes[5]. Akar et al. used approximate entropy 
(AE), Shannon entropy, Kolmogorov complexity 
(KC) and Lempel-Ziv complexity (LZC) to analyse 
EEG complexity. Compared to normal people, the 
complexity of schizophrenic patients was lower, and 
there were significant differences in the left frontal 
lobe (F3) and parietal lobe (P3) regions of the brain. 
Compared with other eigenvalues, KC could detect 
EEG complexity more sensitively in patients with 
schizophrenia. In addition, there were significant 
hemispheric complexity differences in the frontal and 
parietal regions of the brain[6]. Nugent et al. analysed 
the brain source connectivity in resting state and task 
state of schizophrenia patients. It was found that the 
average connectivity of schizophrenia patients and 
normal people was significantly different in θ band, 
and the scalp oscillation power of schizophrenia 
patients was higher than that of normal people[7]. 
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Schizophrenia is a very common mental disorder, and it 
seriously endangers human health. The in-depth study 
of brain signals of schizophrenic patients can provide 
reference for clinical diagnosis and bring hope for the 
rehabilitation of schizophrenic patients.

MATERIALS AND METHODS

Magnetoencephalographic data of schizophrenia:

The MEG data used are from the NIH (National 
Institute mental Health) Research Center. The 
magnetoencephalographic data were collected by 
a 275-channel CTF-275 magnetoencephalograph. 
The subjects include 10 healthy subjects and  
10 schizophrenics. In the experiment, the subjects were 
in a closed-eye resting state. The acquisition time of 
magnetoencephalographic signals was 4 min and the 
sampling frequency was 600 Hz. Before extracting 
features, the signal was pre-processed as follows: 
firstly, the signal was filtered by 0.1-50 Hz band-pass 
filter, then principal component analysis combined 
with independent component analysis was used to 
remove artifacts such as eye and electrocardiograph 
(ECG), and the sampling frequency was 150 Hz. The 
40 s data of beginning and end were removed, and the 
actual analysis time was 160 s, so that the data of each 
participant was a group of 273×24000 data array.

Extraction of characteristic parameters of 
magnetoencephalographic signals in schizophrenia:

Before feature extraction, MEG signals were windowed 
and segmented into stationary signals with 200 sample 
points per segment. Firstly, feature parameters such as 
model coefficients, bandwidth energy, AE and LZC were 
extracted, and 12 feature parameters were obtained from 
each segment of data. In order to visually represent the 
extracted features, the average and standard deviation 
of frequency band energy characteristics, AE and LZC 
were calculated, respectively. 20 subjects were divided 
into 10 groups, each consisting of one normal person 
and one schizophrenic patient. According to Eqn. 1, the 
separability measure J was calculated for 273 channel 
data of each group, and all channels were arranged 
in descending order according to J value, and the 
first 80 channels were selected. Of the 80 channels in  
10 groups, channels with more than 6 occurrences were 
selected. Eqn. 1, J = trSb/tsSw.

Back propagation (BP) neural network and support 
vector machine (SVM) network selection channel:

Channel selection for BP neural network and SVM 

classifier was done on the basis of distance criterion, 
LRS (Plus-L Minus-R selection) algorithm was used 
to further select the 21 selected channels. In LRS 
algorithm, each time a one-dimensional feature of 
12-dimensional features was used as the data sample 
of the classifier, and the classification accuracy of the 
classifier was used as the evaluation function. The 
algorithm stops when the number of channels was 15. 
Genetic algorithm combined with BP neural network 
selection: genetic algorithm was used to select features. 
Table 1 is the parameter setting of genetic algorithm, 
the maximum evolutionary algebra was 100, and the 
fitness function is defined as the classification accuracy 
of classifier.

Design of experimental system:

The experimental system mainly included four stages, 
signal acquisition, pre-processing, feature extraction 
and pattern classification. Pre-processing is mainly 
used to eliminate the interference signals in the steady 
state visually evoked potentials (SSVEP) signal. In 
feature extraction part, DFT, CCA and MSI were used 
to extract the features of SSVEP signal. Considering 
the real-time performance of brain-computer interface 
(BCI) system, a simple and efficient value comparison 
method was used for classification. Feature extraction 
and classification methods were used to identify the 
subjects' gaze targets. These algorithms are very 
important to the performance of the whole BCI system. 
Design and implementation of visual stimulation 
interface: during the experiment, all stimuli were 
presented to the subjects simultaneously. The subjects 
focus on one stimulus, and the oscillating component 
of the EEG signal was the evoked SSVEP signal. 
When designing stimulator, the effects of stimulator 
equipment, stimulus frequency and stimulus colour on 
SSVEP signal should be considered.

NeuroScan EEG acquisition system was used to 
collect EEG signals. The system included Synamps2/
RT amplifier, 64-conductive electrode cap and Curry7 
analysis software. Synamps2/RT amplifier included 

Items Parameters

Population size 20

Stopping criteria Maximum evolutionary algebra

Initialization Uniform distribution in [0,…,1]

Selection Roulette selection

Crossover Single point crossover

Mutation Boundary mutation

TABLE 1: GENETIC ALGORITHM PARAMETERS
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two parts, a control box (system) and an amplifier 
(head box). The position of 64-conductive electrode 
cap electrode meets the international 10-20 system 
standard. The parameters of the amplifier such as 
sampling frequency and available electrodes, were 
set by Curry7 analysis software, and the impedance 
of each electrode is displayed online. In addition, 
the software can also pre-process the collected EEG 
signals, including baseline correction, removal of 
direct current (DC) drift, removal of eye, and filtering 
subsection.

EEG experimental process:

The subjects were made to sit 60 cm away from the 
display. The four stimulation frequencies were 7.5, 
8.57, 10 and 12 Hz, respectively. There were three 
healthy male subjects aged 20-25. Participants were 
required to complete two sessions, each session 
consisting of 10 trials. Each trial participant continued 
to watch the flicker of a block on the interface for 16 s. 
The target stimulation frequency of session 1 was 8.57, 
12, 7.5, 12, 10, 8.57, 10, 10, 12, and 12 Hz; the target 
stimulation frequency of session 2 was 12, 8.57, 7.5, 
10, 12, 12, 7.5, 10, 8.57 and 10 Hz. When the subjects 
looked at the target stimulus at a certain frequency, 
they could detect the same frequency of SSVEP signal 
and harmonic signal, which were mainly distributed in 
the occipital lobe of the brain. The data of O1, O2, Oz 
and VEO were recorded. VEO is a vertical eye signal. 
The electrode impedance was less than 5000 Euros and 
the sampling frequency of SSVEP was 500 Hz.

EEG frequency recognition:

Signal pre-processing was using Curry7 software 
to pretreat the collected SSVEP signal. Covariance 
method was used to remove the eye artifacts and 
segment the data in different time windows. SSVEP 
frequency recognition based on DFT, Fourier transform 
is generally used to process linear steady-state signals. 
The segmented SSVEP signals can be approximately 
regarded as linear steady-state signals. The collected 
data were divided into two overlapping segments for 
2 s, and the DFT was carried out on the segmented 
data that are the spectrum of the SVEP signals of 
7.5, 8.57, 10 and 12 Hz, respectively. Segmentation 
with overlapping multi-time windows for the data 
of three subjects was conducted, and the data after 
segmentation were performed with DFT. The energy at 
all four stimulation frequencies was calculated and the 
frequency corresponding to the maximum energy was 
used as the target frequency recognized.

RESULTS AND DISCUSSION

Six AR model coefficients, four frequency band 
energies, one AE feature and one LZC feature obtained 
by extracting the characteristic parameters of the 
signal. Finally, 12 characteristic parameters were 
obtained from each segment of the data. In order to 
visually represent the extracted features, the average 
and standard deviation of band energy characteristics, 
AE and LZC were calculated, respectively. Fig. 1 
shows the energy of four bands, δ, θ, α, and β. Fig. 2 
shows the AE and LZC.

Because there were redundant channels in 273 channels 
of MEG signal, the distance criterion was used to pre-
select 273 original channels. Separability measure 
J was calculated for 273 channel data of each group, 
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and all channels were arranged in descending order 
according to J value. Separability measure of the first 
80 channels was selected as shown in fig. 3. The results 
of channel selection based on BP neural network and 
SVM classifier are shown in Table 2. The shadows in 
the table represent the channels in the temporal lobe.

As can be seen from Table 2, most of the selected 
channels are located in the temporal lobe region, 
which indicates that the channels in the temporal lobe 
region may carry more differential information. In 
addition, the evaluation function values of the 6th order 
AR coefficients were relatively high, and the highest 
classification accuracy could reach 98.75 %. Twelve 
channels, MRF25, MRC15, MRF65, MLO42, MRF44, 
MRT31, MRF14, MRT11, MLO41, MRT2 2, MRT53 
and MRF35, which appear at least nine times in the 
12 columns screened by BP, are selected as the final 
result of LRS algorithm based on SVM classifier. 
Similarly, 13 channels, MLO41, MRT 24, MLC 42, 
MRF 14, MRT 11, MRF 65, MRT 31, MRT 44, MRF 
44, MRT 51, MRT 32, MRT 21 and MRF 25, which 
appear at least nine times in 12 columns of SVM 
screening channels, were selected as the final results 
of the BP neural network-based LRS algorithm. After 
using LRS method to select channels based on BP 
neural network classifier, there were 144-dimensional 
(12-channel×12 features) features, and 156-dimensional  
(13 channels×12 features) features based on SVM 
classifier selected. Proper feature selection can 
effectively remove irrelevant and redundant features 
and improve the learning efficiency of classifiers.

The 80-dimensional features were obtained by 
combining genetic algorithm with BP neural network. 
After using genetic algorithm and SVM to select 
features, the number of features was 75 dimensions, 
which is nearly half of the number of features reduced 
compared with 144 dimensions and 156 dimensions 
before feature selection. The features selected by 
genetic algorithm were used as training and testing 
data of classifier. The classification results of MEG 
signals are shown in Table 3. The final classification 
accuracy of BP neural network and SVM was 98.5 and 
99.75 %, respectively. Comparing the classification 
results before and after feature selection, it was found 
that the true positive rate, the true negative rate and 
the classification accuracy rate were improved after 
feature selection by genetic algorithm, and the true 
negative rate of SVM was 100 %. In addition, the 
modelling time of BP neural network and SVM was 

greatly reduced after feature selection, and the running 
speed of classifier was significantly improved. By 
comparing BP neural network with SVM classifier, it 
was found that the classification result of SVM is better 
than that of BP neural network, and the modelling time 
was shorter, so in general, the performance of SVM 
was better than that of BP neural network.

SSVEP signals were generated by periodic visual 
stimuli of a certain frequency. In addition to the 
main fundamental component, they usually contain 
harmonic components. In DFT analysis, the results are 
shown in fig. 4A-D. It is obvious that the peak energy 
of the signal appears at the target stimulus frequency.

The data of three subjects were divided into overlapping 
segments with multiple time windows. The data after 
segmentation were carried out with DFT and the energy 
at all four stimulation frequencies was calculated. The 
frequency corresponding to the maximum energy was 
used as the target frequency recognized. The results of 
SSVEP frequency recognition based on DFT method 
are shown in fig. 5. With the increase of data length, the 
recognition accuracy was improved.

A multi-dimensional complexity-based method for 
the analysis of magnetoencephalographic signals in 
schizophrenia was proposed. The method of genetic 
algorithm combined with BP neural network and 
SVM was used and the classification accuracy of 
magnetoencephalographic signals in schizophrenia 
and normal people was 98.5 and 99.75 %, respectively. 
At the same time, EEG experiments based on SSVEP 
were designed and EEG data of many subjects were 
successfully collected. Spectrum analysis of SSVEP 
signals was carried out by DFT method. It was found 
that the energy of signals was the largest at the target 
stimulus frequency, and the recognition accuracy was 
increased with the increase of data length. It is helpful 
to further understand the basic pathogenesis of brain 
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Fig. 3: Separability metrics for the first 80 channels
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Classification 
characteristics AR1 AR2 AR3 AR4 AR5 AR6 α β δ θ ApEn LZC

LRS channel 
selection (BP) 
screening 
channel

MRT24 MLO41 MRT24 MLC42 MRT24 MRT53 MRT52 MLO42 MLO41 MLO41 MLO41 MRT44

MRT44 MRT24 MLC42 MRF65 MRF65 MLO42 MRF35 MRC15 MRT22 MRC15 MRF65 MLC42

MLC42 MRF65 MRC15 MRC15 MRC15 MRC15 MLO42 MRF65 MRF65 MRF44 MLC42 MLO42

MRT41 MLC42 MRF65 MRT24 MLC42 MRF65 MRT11 MRF14 MRT31 MRF14 MRT11 MRT31

MRT42 MRT44 MLO42 MRT32 MRF44 MRT52 MRC15 MRF35 MRF35 MRF35 MRF25 MLO41

MRF25 MRC15 MRT42 MLO42 MRT11 MRF25 MRT31 MRT44 MRC15 MRT11 MRT22 MRF44

MRC15 MRT31 MRT52 MRT41 MRT51 MRF44 MRT51 MRF25 MRT32 MRT51 MRT31 MRT52

MRF65 MRF14 MRT53 MRF14 MRT52 MRT32 MRF65 MRT31 MRF44 MRT31 MRT44 MRT53

MRT32 MRT41 MRT21 MRF35 MRF25 MRT42 MRT53 MRT22 MRT11 MRT22 MRT52 MRT51

MLO42 MRT22 MRT44 MRF44 MRT53 MRT22 MRF14 MRT42 MRT24 MRT53 MRT41 MRF35

MRF44 MRT32 MLO41 MRT22 MLO42 MRT21 MLC42 MRT21 MRF25 MRF25 MRF44 MRF25

MRT31 MRF44 MRT11 MRT51 MRF14 MLO41 MRT42 MRT51 MRT53 MRT52 MRT53 MRT22

MRT21 MRT53 MRF44 MRF25 MLO41 MRF35 MRT22 MRT11 MRT44 MRT21 MRF35 MRC15

MRF14 MRT51 MRT31 MLO41 MRT31 MRT31 MRT32 MRT52 MLO42 MRT44 MRT24 MRT11

MRT11 MRT42 MRF14 MRT21 MRF35 MRF14 MRT21 MRT41 MRT41 MRF65 MRF14 MRF14

Evaluation 
function 95.25 96.25 96.75 96.25 93.5 85.75 70.75 75.25 77 76.25 72.5 65.75

LRS Channel 
selection (SVM) 
screening 
channel

MLO41 MLO41 MRF65 MRT24 MLO42 MRF65 MRF44 MRF44 MRT44 MLO41 MLO42 MLO41

MRT52 MRT24 MRC15 MLO41 MRF65 MRT32 MRT31 MRT11 MLC42 MLC42 MRT44 MRT42

MRT24 MRF65 MLO42 MLC42 MRC15 MLC42 MLO42 MRT21 MRT52 MRT41 MRF65 MLO42

MLC42 MRC15 MRT24 MRT51 MRT24 MRT22 MRC15 MLC42 MRF65 MRT52 MRT41 MRT41

MRF14 MRF35 MRT44 MRF44 MLC42 MRT53 MLC42 MRT24 MRC15 MRT53 MRT32 MRF44

MRT11 MRF44 MRF44 MRC15 MRF44 MRT41 MRT11 MRF25 MLO41 MRF35 MRT51 MRT51

MRC15 MRF14 MRF14 MRF14 MRT21 MRT42 MRF35 MRT32 MRT53 MRT21 MRF44 MRF14

MRF65 MRT21 MRT21 MRT44 MRF25 MRT52 MRT44 MRF14 MRT24 MRT22 MRF14 MRF65

MRT31 MRT51 MRT51 MRT31 MRF14 MRT51 MRT21 MLO41 MRT51 MRT32 MRT21 MRT24

MRT44 MRT53 MLO41 MRT11 MRF35 MRT21 MRT24 MRT41 MRT22 MRF65 MRT53 MRT32

MRF44 MRT42 MRF25 MRF25 MLO41 MRT44 MRT32 MLO42 MRF25 MRT51 MLC42 MRT52

MRT22 MRT32 MRT53 MRT42 MRT31 MRT11 MRT52 MRT22 MRF35 MRT11 MRF35 MRT31

MRT51 MRT31 MRT11 MRT21 MRT11 MRF44 MRF25 MRT31 MRT11 MRF44 MRT42 MRC15

MRT32 MRT52 MRF35 MRT41 MRT44 MRF35 MRF65 MRT51 MRF14 MRT24 MRT31 MRT44

MRT42 MRF25 MRT31 MRT53 MRT22 MRF25 MRT51 MRT42 MRT32 MLO42 MRT22 MRF25

Evaluation 
function 96 98.25 98.75 98.75 97.5 88 74 77.25 77.25 86.25 77.5 67.2

TABLE 2: LRS CHANNEL SELECTION (BP) AND (SVM)

Items
Before feature selection After feature selection

BP SVM BP SVM

Feature dimension 144 156 80 75

True positive rate (%) 97.5 99 98.5 99.5

True negative rate (%) 95.5 98.5 98.5 100

Classification accuracy (%) 96.25 98.75 98.5 99.75

Modeling time (s) 2.64 2.34 0.7 0.44

TABLE 3: CLASSIFICATION RESULTS
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Fig. 4: DFT (A) 7.5 Hz, (B) 8.57 Hz, (C) 10 Hz, (D) 12 Hz spectrum
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Fig. 5: DFT-based SSVEP frequency recognition results

diseases and provide reference for clinical diagnosis of 
brain diseases.
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