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Systemic lupus erythematosus is a diffuse connective tissue disease mediated by autoimmunity and characterized 
by immune inflammation. The purpose of this study is to explore candidate key genes and immune cell 
infiltration involved in the pathogenesis of systemic lupus erythematosus. Intersection genes derived from 
differentially expressed genes between systemic lupus erythematosus patients and healthy individuals are 
identified by weighted gene co-expression network analysis of module genes were aimed for gene ontology 
functional enrichment analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis. 
The key candidate genes interferon induced protein with tetratricopeptide repeats 1 and interferon induced 
protein with tetratricopeptide repeats 3 were searched through the protein-protein interaction network. 
The cell-type identification by estimating relative subsets of ribonucleic acid transcripts arithmetic tool 
assessed the abundance of immune cells in samples from systemic lupus erythematosus patients. Enzyme-
linked immunosorbent assay confirmed the differential expression of candidate genes in serum samples from 
systemic lupus erythematosus patients and healthy controls. This study found that interferon induced protein 
with tetratricopeptide repeats 1 and interferon induced protein with tetratricopeptide repeats 3 may devote to 
the pathogenesis and development of systemic lupus erythematosus and can be used as prediction target genes 
of systemic lupus erythematosus. In addition, neutrophils and plasma cells were infiltrated more in systemic 
lupus erythematosus patients with high expression of interferon induced protein with tetratricopeptide 
repeats 1 and interferon induced protein with tetratricopeptide repeats 3. Interferon induced protein with 
tetratricopeptide repeats 1 and interferon induced protein with tetratricopeptide repeats 3 are important 
predictors for the diagnosis and treatment of systemic lupus erythematosus.

Key words: Systemic lupus erythematosus, gene ontology, Kyoto encyclopedia of genes and genomes, immune 
infiltration, costimulatory genes

Systemic Lupus Erythematosus (SLE) is generally 
considered to be a typical autoimmune disease, which 
is characterized by the production of auto-antibodies, 
causing inflammation and multiple organ damage, 
but the detailed etiology is still unclear. Serious 
complications of SLE leads to nephritis, anemia, 
neurological symptoms and thrombocytopenia 
resulting in severe morbidity and mortality[1]. 
Therefore, early identification of SLE is important to 
limit disease progression and prevent organ damage 
and death. The use of biomarkers to predict patients 
at high risk of SLE may help in early treatment[2].

SLE is a complex multi-system autoimmune 
disease[3], which is characterized by the imbalance 
of T and B lymphocyte activation, resulting in 
the production of a large number of auto-reactive 
antibodies[4]. The activation of B cells that produce 

auto-antibodies depends on the assistance of T 
cells through cytokines and costimulatory genes[5]. 
Costimulatory genes promote crosstalk between 
leukocytes through mutual stimulation and inhibition 
of signals, which is helpful to produce different 
immune results under normal physiological and 
pathological conditions. The imbalance in the 
expression of costimulatory genes may be related 
to the susceptibility to autoimmune or chronic 
inflammatory diseases[6]. Therefore, the use of 
biological targets to establish associations between 
SLE and costimulatory genes may also help to 
understand their immune properties.

It has been widely accepted that congenital and 
adaptive immune disorders are involved in the 
immune pathogenesis of SLE. The imbalance of 
immune related cells may result from the complex 
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interaction of genetic, epigenetic, environmental and 
immune factors[7]. With the rapid development of 
microarray technology and bioinformatics analysis, 
more and more microarray data analysis of SLE 
has been carried out and hundreds of Differentially 
Expressed Genes (DEGs) have been identified. 
Integrating and reanalyzing the data obtained by 
these bioinformatics methods is helpful to identify the 
target genes, gene regulatory pathways and immune 
infiltration of SLE, and provide new and valuable 
ideas for exploring the molecular mechanism of SLE 
and determining reliable diagnostic and therapeutic 
targets.

MATERIALS AND METHODS

Microarray data information:

The original sequencing information and data are 
downloaded to the Gene Expression Omnibus (GEO) 
(http://www.ncbi.nlm.nih.gov/geo/) databases 
(GSE110174 and GSE121239). The GSE110174 
data set included 154 samples, including 144 SLE 
patients and 10 healthy controls. The GSE121239 
data set included 312 whole blood samples, including 
292 SLE patients and 20 healthy controls. The series 
matrix and probe annotation documentation were 
downloaded from the GEO website and then the 
specific probe was converted into the corresponding 
genetic symbol according to the provided annotation 
document. All these data’s were initially calculated 
and abnormal data’s were excluded from quality 
control. Hierarchical clustering was carried out 
to eliminate duplicate data. Since the data in the 
experiment are all from the public database, there 
is no need to obtain the approval of the ethics 
committee.

Screening and analysis of DEGs:

R software (version 3.4.1; https://www.rproject.org/) 
was used to further analyze the data. Student t-test in 
the limma package was used to analyze significant 
differences between SLE patients and healthy 
controls. DEGs with adjusted p<0.05 and log|Fold 
Change (FC)|≥1 were considered statistically 
significant. 

Construction of Weighted Gene Co-expression 
Network Analysis (WGCNA):

WGCNA is a method to analyze gene expression 
patterns of multiple samples, which can cluster genes 
with similar expression patterns and analyze the 

association between modules and specific traits or 
phenotypes, so it is widely used in genome research. 
We used the WGCNA software package in R to build 
a co-expression network for DEGs, which aimed to 
use highly related gene modules to find core genes. 
We established a weighted correlation adjacency 
matrix and defined a correlation capability (soft 
threshold parameter), which strengthened the strong 
correlation between genes and weakened the weak 
correlation or negative correlation. We converted 
the adjacency into a Topological Overlap Matrix 
(TOM) to measure the network connectivity of genes 
and TOM summarized the neighboring genes of the 
network gene ratio and calculates the corresponding 
differences. We used average linkage hierarchical 
clustering based on TOM difference measurement 
to classify genes and gene modules with similar 
expression profiles. These genes were represented 
by branches and different colors of cluster trees, 
respectively, and the module relationships were 
constructed. The correlation between gene modules 
and phenotypes was calculated.

Functional annotation and pathway enrichment 
analysis:

Venn diagram intersected the DEGs from GSE110174 
and GSE121239 datasets with their respective 
module genes and retained their common genes for 
further analysis. Genes Ontology (GO) enrichment 
analysis is composed of three aspects, namely, 
biological processes, molecular functions and cellular 
components. It is a widely used ontology database to 
show functions and biological processes involved. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database is mainly used for path analysis. These two 
analyses are always combined to enrich the biological 
significance of Common DEGs (CDEGs). 

Construction of Protein-Protein Interaction (PPI) 
network and determination of hub genes:

Venn diagram intersected the differential genes and 
module genes in the two data sets and screened 25 
common differential genes for further analysis. To 
evaluate the relationship between these CDEGs, the 
Search Tool for the Retrieval of Interacting Genes 
(STRING) (http://string-db.org) was used to build a 
PPI network. It can use neighborhood, gene fusion, 
co-occurrence, co-expression experiments, database 
and text mining to predict PPIs. We used Cytoscape 
software (version 3.7.2; http://www.Cytoscape.org) to 
visualize network analysis. CytoHubba software was 
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used to select the 10 most relevant key genes, which 
may be involved in mediating the main physiological 
regulation functions in SLE. We used a scatter plot 
to explore the correlation between 10 key genes 
and found that there was a high correlation between 
Interferon Induced protein with Tetratricopeptide 
repeats 1 (IFIT1) and Interferon Induced protein with 
Tetratricopeptide repeats 3 (IFIT3), so we mainly 
studied the two key genes IFIT1 and IFIT3.

Evaluation of immune infiltration:

Cell-type Identification by Estimating Relative 
Subsets of Ribonucleic acid Transcripts 
(CIBERSORT), an analytical tool, was used to 
evaluate the richness of immune cells in samples 
from SLE patients. We ranked SLE patients 
according to the expression of key genes and divided 
them into high and low groups. Then the violin 
picture was drawn using the "grammar of graphics 
plot 2" (ggplot2) package to visualize the difference 
of immune cell infiltration and costimulatory gene 
expression in the high and low expression groups 
of key genes, and then the relevant heat map was 
drawn using the "comPlot" package to explore the 
correlation between 22 types of immune cells in SLE 
patients.

Collection of serum samples:

36 SLE patients were collected from the Third 
affiliated Hospital of Nantong University. The 
diagnostic criteria were in line with the revised criteria 
of SLE by the American College of Rheumatology in 
2009. Relevant clinical and laboratory characteristics 
of SLE patients included sex, age, disease duration, 
the SLE disease activity index score, anti-double-
stranded Deoxyribonucleic Acid (anti-dsDNA) 
antibody, low complement, glucocorticoid dose and 
the use of disease-modifying anti-rheumatic drugs. 
36 age-matched healthy controls were collected and 
healthy controls without a history of autoimmunity 
or immunosuppressant therapy were required.

Enzyme-Linked Immunosorbent Assay (ELISA) 
experiment:

The ELISA kit was purchased from Jiangsu Jingmei 
Biotechnology Co., Ltd. The ELISA kit was used to 
determine the levels of IFIT1 and IFIT3 in serum 
samples by double antibody sandwich method, 
with sensitivity above 95 % and specificity above 

98 %. The steps were performed according to the 
manufacturer’s instructions.

RESULTS AND DISCUSSION

Identification of DEGs was described here. Fig. 1 
illustrated the workflow of the specific application 
and all the data used in this research. Screening 
criteria of DEGs between SLE patients and healthy 
controls were identified as p<0.05 and log|FC|≥1. In 
GSE110174, 104 DEGs were differentially expressed 
between SLE patients and healthy controls, of which 
86 were up-regulated and 18 were down-regulated 
(fig. 2A-fig. 2E). Similarly, in GSE121239 of 292 
SLE patients and 20 healthy controls in which we 
identified 71 DEGs, of which 40 were up-regulated and 
31 down-regulated (fig. 3A-fig. 3E). Interestingly, we 
found that some genes showed significant differences 
between the two data sets such as Interferon alpha-
Inducible protein 27 (IFI27), Interferon Induced 
protein 44 Like (IFI44L), Interferon Induced 
protein 44 (IFI44), IFIT1, Interferon-Induced 
protein with Tetratricopeptide repeats 2 (IFIT2), 
IFIT3, Interferon-Stimulated Gene 15 (ISG15) and 
Myxovirus Resistance 1 (MX1). Compared with the 
normal group, many important genes in SLE showed 
significant changes in expression (fig. 2B and fig. 
3B). By comparing the SLE with the healthy controls, 
the volcano maps were designed to show DEGs (fig. 
2C and fig. 3C). 

Construction of modules through WGCNA was 
explained here. To construct the co-expression 
module, we performed WGCNA on genes in the two 
data sets separately. The corresponding relationship 
between genes and modules was obtained in the 
form of a gene clustering tree diagram. The genes 
clustered in GSE110174 data set were mainly divided 
into red modules (fig. 2D), in which the upper part 
was the hierarchical clustering tree of genes and the 
lower part was the gene module. Corresponding up 
and down parts, we could see the genes that were 
close to each other (clustered into the same branch) 
were divided into the same module. While the genes 
clustered in GSE121239 data set were mainly divided 
into grey and blue modules (fig. 3D). To explore the 
correlation among module genes SLE and healthy 
controls, we drew the intrinsic adjacency heat map 
of module genes. 139 genes clustered in the red 
module had the highest positive correlation with SLE 
patients (correlation coefficient-0.34, p<0.05) and 
the highest negative correlation in healthy controls 
(correlation coefficient-0.34, p<0.05) (fig. 2E). 
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However, the genes clustered in the grey module 
in GSE121239 had the highest negative correlation 
with the occurrence of SLE and the highest positive 
correlation in normal people, which was contrary to 
fig. 2E and did not accord with the situation of this 
study, so the blue module with the second correlation 
was selected (fig. 3E). The 291 genes of the blue 
module had the highest positive correlation with SLE 
patients (correlation coefficient-0.28, p<0.05) and 
the highest negative correlation in healthy controls 
(correlation coefficient-0.28, p<0.05).

GO and KEGG analysis of Intersection DEGs 
(IDEGs) was shown here. The DEGs of GSE110174 
were intersected with the red module genes and 51 
IDEGs were obtained (fig. 4A-fig. 4E). The DEGs of 
GSE121239 were intersected with the blue module 
genes and 39 IDEGs were achieved (fig. 4D). For the 
GO enrichment analysis, the IDEGs of two data sets 
mainly regulated by defense and response to a virus, 

type I Interferon (IFN) signal pathway, response to 
IFN and Ribonucleic Acid (RNA) binding promotion 
(fig. 4B and fig. 4E). The KEGG pathway analysis 
of 51 IDEGs were enriched in a variety of infectious 
diseases, including viral hepatitis C, influenza 
A, measles, coronavirus 19, Epstein-Barr virus 
infection, as well as immune system-related signaling 
pathways, such as cytoplasmic DNA induction 
pathway and nod-like receptor signal pathway (fig. 
4C). The KEGG pathways of 39 IDEGs showed not 
only the infectious diseases mentioned above, but 
also human papillomavirus infection (fig. 4F).

Construction of PPI network was shown here. The 
Venn diagram was used to intersect the IDEGs and 
module genes in the two data sets to get 25 CDEGs 
(fig. 5A). To further study the correlation between 
CDEGs, a PPI network was constructed based 
on STRING online and visualized by Cytoscape 
software (fig. 5B). CytoHubba was used to screen the 

Fig. 1: Flow chart of bioinformatics methods for analyzing SLE
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Fig. 2: Screening of DEGs by WGCNA in GSE110174
Note: (A) The deviation graph of DEGs, (  ) Up-regulation and (  ) Down-regulation; (B) The heatmap of DEGs, (  ) Normal type and (  ) SLE 
type; (C) The volcano map of the DEGs, each dot represents a gene, (  ) Up-regulated genes, (  ) Down-regulated genes and (  ) Indifferent genes; 
(D) The dendrogram of gene clusters and (E) Module feature related heatmap and correlation of intrinsic adjacency heatmap among module genes 
of SLE and healthy controls, (  ) Positive correlation and (  ) Negative correlation

Fig. 3: Screening of DEGs by WGCNA in GSE121239
Note: (A) The deviation graph of DEGs, (  ) Up-regulation and (  ) Down-regulation; (B) The heatmap of DEGs, (  ) Normal type and (  ) SLE 
type; (C) The volcano map of DEGs, (  ) Up-regulated genes, (  ) Down-regulated genes and (  ) Indifference genes; (D) The dendrogram of gene 
clusters and (E) Module feature related heat maps
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Fig. 4: Functional enrichment analysis of IDEGs
Note: (A) 51 IDEGs were identified from GSE110174 and red module genes; (B) GO enrichment analysis of 51 IDEGs; (C) KEGG enrichment anal-
ysis of 51 IDEGs; (D) 39 IDEGs were identified from GSE121239 and blue module genes; (E) GO enrichment analysis of 39 IDEGs and (F) KEGG 
enrichment analysis of 39 IDEGs

Fig. 5: Identification of core genes 
Note: (A) Identification of 25 CDEGs by Venn diagram; (B) The network used STRING to demonstrate PPI between CDEGs and visualize them 
through Cytoscape 3.7.2, (  ) Node; (  ) Edges and their intensity represented the degree of gene interaction; (C) CytoHubba was used to screen 
10 key genes in the PPI network according to the degree score (the darker the color indicates higher the grade); (D) Correlation analysis between 
IFIT1 and IFIT3 in GSE110174 and (E) Correlation analysis between IFIT1 and IFIT3 in GSE121239
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10 genes with a high degree of hub genes in the PPI 
network (fig. 5C).

To determine the hub genes screening of 10 key 
genes was done. Among the 10 key genes, MX1 and 
ISG15 have been widely studied, which also verified 
the reliability of the key genes screened at present. 
Among the remaining 8 genes, IFIT1, IFIT3, IFI27, 
IFI44 and IFI44L were family genes. According to 
the available data, IFI44, IFI27 have been confirmed 
to be related to the occurrence and progression of 
SLE in other researches. There was a high correlation 
between IFIT1 and IFIT3 in different data sets 
(correlation coefficient-0.97, p<0.05) (fig. 5D and 
fig. 5E), but this correlation was not found in other 
genes, so the next study focused on IFIT1 and IFIT3.

Immune infiltration analysis was explained here. 
To explore whether IFIT1 and IFIT3 are associated 
with the occurrence and progression of SLE, we 
performed immune infiltration analysis in patients 
with SLE. First of all, we excluded healthy controls 
from the two data sets and divided SLE patients 
into high and low expression groups based to the 
median expression of IFIT1 and IFIT3 respectively. 
The infiltration of 22 kinds of immune cells was 
compared in the high and low expression groups 
of IFIT1 and IFIT3 separately. The violin graph of 
different immune cell composition was shown in 
GSE110174 data set. When compared with IFIT1 
low expression group, neutrophils (p<0.05) and 
plasma cells (p<0.001) were more infiltrated, while 
the Cluster of Differentiation 8 (CD8+) T cells (p<0. 
01) was less infiltrated in the IFIT1 high expression 
group (fig. 6A). Compared with the low expression 
group of IFIT3, neutrophils (p<0.05) and plasma 
cells (p<0.001) were more infiltrated, while CD8+ 
T cells (p<0.05) was less infiltrated in the IFIT3 
high expression group (fig. 6B). Therefore, in 
GSE110174, the infiltrating immune cells in the 
high expression group of IFITI and IFIT3 were the 
same. In GSE121239, when compared with IFIT1 
low expression group, neutrophils (p<0.001) and 
plasma cells (p<0.001) were more infiltrated, while 
CD8+ T cells (p<0.001) was less infiltrated in IFIT1 
high expression group (fig. 6C). Compared with the 
low expression group of IFIT3, the SLE patients 
with high expression of IFIT3 had more infiltration 
of neutrophils (p<0.001) and plasma cells (p<0.001), 
but less infiltration of CD8+ T cells (p<0.001) in 
IFIT3 high expression group (fig. 6D). Combined 
with the whole analysis, in SLE patients with high 

expression of IFIT1 and IFIT3, there were relatively 
more infiltration of neutrophils and plasma cells.

We performed immune correlation analysis to 
determine the correlation between different cells. In 
GSE110174, there was a strong positive correlation 
between activated Cluster of Differentiation 4 (CD4+) 
T memory cells and inactivated natural killer cells 
neutrophils (r=0.59). At the same time, there was a 
strong negative correlation between neutrophils and 
activated CD4+ T memory cells (r=0.62) (fig. 7A). 
In addition, there was a strong positive correlation 
between memory B cells and plasma cells (r=0.77) in 
GSE121239. However, there was a strong negative 
correlation between neutrophils and CD8+ T cells 
(r=0.71) (fig. 7B).

Association of costimulatory genes with core 
genes was shown here. SLE can participate in 
cell communication through costimulatory genes, 
to drive the presentation of autoantigens and to 
produce pathogenic autoantibodies. At present, 
many studies have shown that many costimulatory 
genes associated with core genes may be involved 
in the pathogenesis of SLE. In this study, we found 
that in two different data sets, the expression of 
costimulatory genes Human Leukocyte Antigen 
(HLA)-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G, 
CD58 and Interleukin-1 beta (IL-1β) were higher in 
both the high expression groups of IFIT1 and IFIT3 
(fig. 8A-fig. 8D). Perhaps the abnormal expression 
of these costimulatory genes was involved in the 
pathogenesis of the SLE mechanism.

Construction of co-expression network of hub 
genes was shown here. New evidence suggested 
that micro RNAs (miRNAs) played a significant 
role in autoimmune diseases, especially in Lupus 
Nephritis (LN). The NetworkAnalyst database 
(http://www.networkanalyst.ca/) was used to predict 
the relationship between key genes and miRNAs. 
61 target miRNAs of 9 specifically expressed hub 
genes were obtained and 76 pairs of messenger 
RNA (mRNA)-miRNA were identified. According 
to the predicted results, mRNAs and miRNAs co-
expression network composed of 70 nodes and 76 
edges was constructed (fig. 9A).

Determination of expression level of key candidate 
genes by ELISA was shown here. ELISA was used 
to detect the contents of serum IFIT1 and IFIT3 
components in healthy controls (n=36) and SLE 
patients (n=36). Normal people and SLE patients can 
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be distinguished by some blood parameters, such as 
Erythrocyte Sedimentation Rate (ESR), Complement 
component 3 (C3), Complement component 4 (C4) 
(fig. 9B-fig. 9D). We found the expression of IFIT1 in 
SLE patients was higher than that in healthy controls. 
The expression level of IFIT3 in SLE patients was 
also higher than that in healthy controls (fig. 9E and 
fig. 9F).

At present, the cause of SLE has not been 
fully clarified. It is thought to involve immune, 
environmental and genetic factors. It is found that 
multiple genes may commit to the occurrence and 
pathogenesis of SLE. The objective of this study was 
to screen candidate biomarkers for the treatment of 
SLE using bioinformatics.

IFN is known to play a role in the pathogenesis of 
SLE. IFN regulates the body’s immune system by 
activating the ISGs. The expression level of IFN-
induced genes is closely related to the pathogenesis 
of SLE. IFI27, IFI44, IFI44L, IFIT1 and IFIT3 are all 
related to IFN. IFI44L and IFIT3 are involved in the 
type I IFN signal pathway, indicating that type I IFN 
signal pathway is closely related to the pathogenesis 
of SLE[8]. In this study, the expression of CDEGs in 
the two groups was mainly regulated by defense and 

response to the virus, IFN signal pathway, response 
to IFN, RNA binding and so on. This is in line 
with the characteristics of immune abnormalities 
belonging to autoimmune diseases. Furthermore, 
CDEGs were mainly enriched in pathways and 
related to susceptibility to infectious diseases and 
were also involved in immune signaling pathways, 
such as nod-like receptor signaling pathways. These 
findings are consistent with the knowledge that SLE 
is a multisystem autoimmune disease. In summary, 
the IFN and IFN signal pathways work on the 
pathogenesis of SLE.

IFI27 is an IFN-α inducible protein with antiviral 
activity. It has been confirmed to be up-regulated 
in Peripheral Blood Mononuclear Cell (PBMC) of 
SLE patients[9]. Some researchers identify IFI27 as a 
potential molecular marker for the diagnosis of SLE 
patients[10].

DNA methylation commits to the pathogenesis 
of SLE[11]. IFI44L promoter demethylation is a 
methylation marker to distinguish SLE patients 
from healthy people, other autoimmune diseases and 
patients with infectious diseases. IFI44L is a type I 
IFN inducible gene. The level of IFN in SLE patients 

Fig. 6: Immune infiltration analysis involving IFIT1 and IFIT3
Note: (A) The violin maps of 22 kinds of immune cells of patients, (A) Low expression and high expression of IFIT1 in GSE110174; (B) Low expres-
sion and high expression of IFIT3 in GSE110174; (C) Low expression and high expression of IFIT1 in GSE121239 (D) Low and high expression of 
IFIT3 in GSE121239, (  ) Low expression group and (  ) High expression group, *p<0.05,**p<0.01 and ***p<0.001
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Fig. 7: Correlation among immune cells
Note: (A) 22 kinds of immune cell-related heatmap in GSE110174. The Pearson coefficient is greater than 0.5 or less than -0.5 can be regarded as a 
strong correlation and (B) Immune cell-related heatmap in GSE121239, (  ) Negative correlation and (  ) Positive correlation
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Fig. 9: Construction of co-expression network of hub genes and determination of expression level of key candidate genes by ELISA 
Note: (A) The larger the dot, the darker the color and the higher the level of key genes, edges were represented as lines (grey) and their intensity 
represented the degree of interaction between key genes and miRNAs; (B-D) ESR, complement C3 and complement C4 were used to differenti-
ate between normal and SLE patients and (E, F) Serum IFIT1 and IFIT3 were measured by ELISA in 36 healthy controls and 36 SLE patients, 
*p<0.05,**p<0.01 and ***p<0.001

is increased[11], but IFN cannot directly induce DNA 
demethylation of IFI44L promoter in PBMC of SLE 
patients[12].

ISG15 is an ubiquitin-like protein induced by 
IFN, which can interfere with the activity of virus 

protein. SLE activity may be effected by ISG15-
mediated resistance to IFN signaling and Signal 
Transducer and Activator of Transcription 1 (STAT1) 
phosphorylation, and protects Regulatory T cells 
(Tregs) from the effects of IFN[13]. Another study 

Fig. 8: Relationship between core genes and costimulatory genes
Note: (A) Relationship between (A) Costimulatory genes and IFIT1 expression groups in GSE110174; (B) Costimulatory genes and IFIT3 expression 
groups in GSE110174; (C) Costimulatory genes and IFIT1 expression groups in GSE121239 and (D) Costimulatory genes and IFIT3 expression 
groups in GSE121239, (  ) Low expression group and (  ) High expression group, *p<0.05,**p<0.01 and ***p<0.001
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shows that Neutrophil Extracellular Traps (NETs) 
containing ISG15, promotes the production of IFN-
gamma (γ) in patients with SLE, which explained the 
persistent pro-inflammatory response of SLE[14].

IFI44 is an IFN response gene. Some researchers 
detect the quantitative expression level of the IFI44 
gene by collecting peripheral blood from patients 
with SLE and healthy controls, which reveals that 
IFI44 committed to the occurrence and development 
of SLE. They also confirm that there are a positive 
correlation between the expression level of IFI44 and 
the clinical manifestation and disease activity of SLE 
by gene sequencing and other methods. Through 
bioinformatics analysis, researchers have found that 
IFI44 can be used as a key candidate gene for LN 
to diagnose diseases or evaluate prognosis[15,16]. In 
addition, the expression level of IFI44 in peripheral 
blood reflects the renal damage of LN to some 
extent. All the core genes screened above had good 
predictive effect on SLE, which further verified the 
reliability of our screening. 

IFIT1 is one of the antiviral RNA binding proteins 
induced by IFN[14]. Some researchers determine 
the gene expression profiles of 10 SLE patients by 
oligonucleotide microarray analysis[17]. Finally, it 
is confirmed that the expression of IFIT1 in SLE 
patients is significantly up-regulated[18], which is 
a candidate gene for SLE. IFIT1 may cross-react 
with Rho/Rac guanine nucleotides to regulate the 
activation of Rho/Rac protein, thus participating in 
the pathogenesis of SLE[14].

IFIT3 is an IFN-induced gene. Its coding protein 
is involved in the innate immune response of virus 
infection[14,16]. The abnormal increase of IFIT3 
in patients with SLE is closely related to the over 
activation of the cyclic Guanosine Monophosphate 
(GMP)-Adenosine Monophosphate (AMP) Synthase 
(cGAS)/Stimulator of IFN Genes (STING) signal 
pathway in monocytes[19]. IFIT3 activates the cGAS/
STING signal pathway by mediating the production 
of IFN. Combined with this study, IFIT3 could be 
used as a new therapeutic target for SLE. Reducing 
its expression level may inhibit the activation of 
the cGAS/STING signal pathway, thus reducing the 
production of type I IFN and other pro-inflammatory 
cytokines, and ultimately improving the clinical 
manifestations of SLE[19]. Both IFIT1 and IFIT3 
have been confirmed to be new therapeutic targets 
for SLE and key candidate genes for the occurrence 
and development of SLE[8], which is consistent with 

the results of our literature analysis.

IFN is a key component of the innate immune 
system. It is reported that, IFN affects a large number 
of immune cells in the pathology of SLE[20]. This 
research showed that neutrophils and plasma cells 
infiltrated more in SLE patients with high expression 
of IFIT1 and IFIT3. We know that plasma cells are 
the terminal cells of B cell differentiation and their 
cytoplasm is rich in the rough endoplasmic reticulum, 
which is conducive to the secretion of a large number 
of specific antibodies. Among many factors in the 
pathogenesis of SLE, abnormal activation of B cells 
and increase of plasma cells focus on the destruction 
of systemic immune tolerance and local autoimmune 
inflammation[21]. In addition, neutrophils can 
secrete highly expressed IFN that contributes to 
inflammation and tissue damage, which is a key 
cytokine in the pathogenesis of SLE[22]. Therefore, 
targeting abnormal neutrophil activation and plasma 
cells in SLE may be a promising approach.

SLE is characterized by a variety of immune 
abnormalities, including T and B lymphocyte 
activation disorders and subsequent polyclonal 
activation of circulating B lymphocytes, resulting 
in the production of a large number of auto reactive 
antibodies. It has been shown that the activation 
of B cells that produce autoantibodies depends 
on the help of T cells through cytokines and 
costimulatory related molecules[5]. The imbalance in 
the expression of costimulatory genes may be related 
to the susceptibility to autoimmune or chronic 
inflammatory diseases[6]. The abnormal production 
of T cell costimulatory genes is very important in 
the immune pathogenesis of SLE. This abnormal 
expression of costimulatory genes may lead to the 
loss of self-tolerance and disease development in 
patients with SLE.

HLA class 1 is related to SLE and increases the 
risk of SLE. Classical HLA-1A genes including 
HLA-A, HLA-B and HLA-C, devote to presenting 
antigenic peptides to CD8+ cytotoxic T cells. Non-
classical HLA-1B genes include HLA-E, HLA-F 
and HLA-G[23]. Hyperactivity of T lymphocytes 
and progressive inflammation in patients with SLE 
lead to overexpression of HLA-1B on the surface 
of lymphocytes. At present, the dynamic changes of 
anti-HLA-F Immunoglobulin G (IgG) autoantibodies 
was caused by the immunogenicity of HLA-F in SLE 
may be related to the clinical activity of SLE[24]. 
HLA-G is a non-classical HLA-1B gene, which lead 
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to immunosuppression by inhibiting the function of 
natural killer cells, CD4+ and CD8+ lymphocytes and 
dendritic cells[25-27].

LN is one of the most serious complications of 
SLE[28]. Therefore, it is particularly important to 
explore potential biomarkers of LN. In this study, 
we found that there is a close relationship among 
IFIT3, IFI44 and miR-146a-5p by constructing the 
co-expression network of Hub genes and miRNAs. 
IFI44 and IFIT3 focus on the pathogenesis of LN 
through bioinformatics analysis[15]. miRNAs can 
induce translation inhibition of target mRNA and 
affect cell metabolism, proliferation and apoptosis[29]. 
miRNAs focus on the pathogenesis of autoimmune 
diseases. miR-146a-5p is the mature sequence of 
the 5’ end of miR-146a transcriptional processing. 
Some researchers have observed a significant 
increase of miR-146a in lupus mouse PBMC, which 
may participate in T cell-mediated inflammation by 
negatively regulating the activity of Nuclear Factor-
kappa B (NF-κB)[30], while the expression of miR-
146a in serum exocrine bodies of SLE patients is 
significantly decreased[31]. The expression of miR-
146a is associated with renal inflammation, fibrosis, 
extracellular matrix remodeling and proteolysis 
of collagen protein. It has been confirmed that the 
expression of miR-146a in patients with LN is 
decreased, which may result in the pathogenesis 
of LN[32,33]. miR-146a may participate in the 
occurrence and development of LN by inhibiting the 
transcriptional activity of NF-κB and the synthesis of 
inflammatory factors[34]. 

Various results confirm the reliability of our 
prediction, but the specific mechanism of our study 
still needs to be further explored. This study found 
that IFIT1 and IFIT3 are the two key genes which 
could be used as prediction target genes of SLE.
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