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Back-Propagation Neural Network Model for Simultaneous Spectrophotometric Estimation
of Losartan Potassium and Hydrochlorothiazide in Tablet Dosage.

D. SATHYANARAYANA*, K. KANNAN AND R. MANAVALAN.

Department of Pharmacy, Annamalai University, Annamalainagar-608 002.

The development of multivariate calibration model with back-propagation neural network using
calibration sets constructed from the spectral data of pure components is proposed for the
simultaneous estimation of active components, losartan potassium and hydrochlorothiazide in
tablet dosage. The calibration sets were designed such that the concentrations were orthogonal
and span the possible mixture space fairly evenly. The back-propagation neural network model
was optimized with respect to the spectral input, training parameters and topology including transfer
functions for each layer so as to yield accurate and precise estimations on model validation. The
optimized model showed sufficient robustness even when the calibration sets were constructed
from different set of pure spectra of components thus enabling periodical validation of model
rapidly and economically. Although the components showed significant spectral overlap, the model
could accurately estimate the drugs, with satisfactory precision and accuracy, in tablet dosage

with no interference from excipients as indicated by the recovery study results.

The artificial neural networks (ANNs) are a data
processing system consisting of a large number of simple,
highly interconnected processing elements inspired by the
biological system and designed to simulate neurological
processing ability of human brain. Theoretical background
information on ANNs can be found elsewhere'3. ANNs have
been applied to diverse areas from missile technology to
medical diagnosis in performing tasks such as classification,
modeling, association, mapping etc. There are reports in
literature on application of ANN for determining the spectra-
structure relationship*®, prediction of secondary and tertiary
structure of proteins®'', quantitative structure-activity
relationship'®'?, pharmacokinetic and pharmacodynamic
analysis'*5, pharmaceutical product development'®'” and
diagnostic and clinical medicine'®?°. The applications of
ANN in the field of chemistry and pharmacy have been
reviewed.?"?® Computationally, the ANN is an approach for
handling multivariate and multiresponse data and hence
suitable for modeling, i.e. a search for an analytical function
that will give a specified n-variable output for any m-variable

*For correspondence:
E-mail: dsn60@sify.com
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input?’. Unlike standard modeling techniques where the
mathematical function is required to be known in advance,
ANN models do not require knowledge of the mathematical
function in advance and are called 'soft models’, i.e. the
models are able to represent the experimental behaviour
of the system when the exact description is missing or too
complex?®. ANNs adapt to any relation between input and
output data on the basis of their supervised training. The
Characteristics that make ANN systems different from
traditional computing are: learning by example, distributed
associative memory, fault tolerance and pattern
recognition?®, The flexibility of ANNs and their ability to
maintain their performance even in the presence of
significant amounts of noise in the input data are highly
desirable? 25, since perfectly linear and noise free data sets
are seldom available in practice, thus making it suitable for
multivariate calibration modeling. The authors had earlier
published their preliminary findings on the application of
ANN for multicomponent sample analysis®.

Losartan potassium (LST), chemically 2-butyl-4-chloro-
1-[[2'-(1H-tetrazol-5-yl) [1,1'-biphenyl]-4-yI} methyl}-1H-
imidazole-5-methanol, is an angiotensin Il receptor
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antagonist.31 Hydrochlorothiazide (HCT), chemically 6-
chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-
sulphonamide 1,1-dioxide, is a diuretic drug®. LST and HCT
combination tablet dosage in the ratio of 4:1 is available,
for the treatment of hypertension. The literature describes
RP-HPLC?®* and spectrophotometric methods?®-% for
simultaneous estimation. This paper presents a rapid and
economical method compared to HPLC for routine
pharmaceutical quality control of this tablet dosage form by
multivariate calibration based on soft modeling using back-
propagation neural network.

MATERIALS AND METHODS

Analytical reagent grade sodium hydroxide was used
to prepare 0.1M sodium hydroxide solution in distilled water
which then served as solvent for making the stock solutions
and all further dilutions of LST, HCT, their standard
combination and the tablet powder.

UV absorption measurements were carried out on
Shimadzu 1601PC (Japan) double beam
spectrophotometer controlled by UVPC software version
3.7, using matched 1.00 cm quartz cells. Class A volumetric
glassware such as pipettes and volumetric flasks were used
for the purpose of making dilutions. All weights were
measured on an electronic balance with 0.01 mg sensitivity.
All computations were carried out on a desktop computer
with a Pentium 4, 1.8 GHz processor and 256 MB RAM.

UVPC software version 3.7 was used for spectral
scanning with the required parameters and saving the
spectral data in ASCII format in addition to its native format.
Graphical User Interface based application software named
"Neuralyzer" was developed in house by the authors, in
Java programming language capable of handling all the
required tasks towards developing, training, validating the
back-propagation neural network (BPNN) models and
using them in analysis of the test samples' spectral data.
Major teatures of Neuralyzer include capabilities to
generate the training (calibration) and monitoring set,
design and configure the BPNN, training the neural network,
use the monitoring error to stop training at an appropriate
optional point, create a report of the analysis of the external
validation spectra along with prediction parameters,
analysis of test spectra and report the concentrations of the
analytes in the test sample. The trained BPNN model can
be saved and loaded into Neuralyzer later at ény time for
analysis.
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Spectra of all the solutions were recorded against a
blank solution containing no analytes between 220 to 400
nm. and saved in native and ASCI! format.

Preparation of standard solutions:

Standard solutions of pure LST and HCT were made at
different concentration levels ranging from 4 to 22 mg/1 for
the purpose of linearity determination and to design the
calibration matrix from their spectra. The absorbance
spectra of the two standards were recorded under the
selected experimental conditions and are shown in fig. 1.

Absorbances
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220 320
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Fig. 1: UV Spectra of LST and HCT.

Overlain spectra of LST (----) at concentration of 16.260
mg/l and HCT (—) at concentration of 9.963 mg/l in 0.1M
sodium hydroxide.

Synthetic binary mixtures for validation:

A set of 6 stock solutions of pure LST and HCT were
prepared on different days, each by separate weighing, in
0.1M sodium hydroxide. Standard mixtures of the
components were prepared with the concentrations lying
within the known linear absorbance-concentration range
by dissolving varying proportions of LST and HCT stock
solutions such that the concentration of LST varied between
75 to 125 % of the test level concentration while the minor
component HCT varied between 50 to 150 % of its test level
concentration. A total of 80 standard mixtures were made
in which 55 mixtures had ditterent concentrations and 25
were duplicate dilutions of some of them. The concentrations
of components were selected to span the mixture space
fairly evenly, as shown in fig. 2.
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Fig. 2: Synthetic binary mixture design for the validation
of the neural networks.

Synthetic binary mixture design for validation of neural
network model. Each point (¢) represents a mixture at
the respective concentration of the components. Since
there are some replicate mixtures, they are overlapped
in the plot. The design ensures that the model is validated
in a well distributed concentration space especially with
regard to chosen analytical level.

Analysis of tablet dosage form:

For the analysis of the active components of the

Calibration data:

Since the spectra were linearly additive, and no serious
baseline problems or interactions found and since majority
of chemometric techniques for regression and calibration
do assume linear additivity, the process described below
was adopted in the design of calibration data set for training
the BPNN. Three pairs of pure components' spectra were
employed in order to provide a fair simulation, with some
degree of experimental variation. A full factorial design was
employed to obtain 128 training pairs from each spectral
pair representing the mixture space evenly with target

. concentrations that are orthogonal.

A total of 384 training pairs were thus obtained to
constitute the complete calibration set that would be used
to train the BPNN. All the target concentrations in the
calibration set were then normalized to lie between 0.01
and 1.0. In order to optimize the number and the nature of
spectral inputs, several combinations of spectral regions
and wavelength points were chosen and calibration sets
were designed in the same concentration mixture space
with the same pairs of pure spectra using eighteen different

TABLE 1: CALIBRATION DATA SET DESIGN
PARAMETERS.*

antihypertensive tablet (Tozaar-H, LST 50 mg and HCT 12.5 Set Waveleng‘th (nm) Inputs
. Spectral Region Interval
mg, Torrent Pharmaceuticals Ltd.), twenty tablets were Upper Lower
accurately weighed, carefully powdered and mixed. Tablet
powder corresponding to the equivalent of 33 mg of LST A 330 230 3 34
was dissolved in 0.1M sodium hydroxide solution by B 330 230 4 26
sonication for 5 min and made up to 100 ml. The solution C 330 230 5 21
was centrifuged and 5 ml of supernatant was diluted to 100 D 330 230 7 15
ml. Six replicate dilutions were made for each experiment, E 330 230 9 12
repeating the experiment on six different days with freshly F 330 230 10 11
weighed tablet powder. For accuracy studies, by recovery, G 290 235 3 19
the same tablet powder was used in amounts corresponding H 290 235 4 14
to the equivalent of 20 mg of LST (in order to enable spiking | 290 235 5 12
up to desired levels). The powder was then mixed with a J 290 235 7 8
known quantity of pure LST and HCT and dissolved in 0.1M K 290 235 9 7
sodium hydroxide by sonication and made up to 100 m! L 290 235 10 6
with the same solvent. The solution was then centrifuged M 280 240 3 14
and 5ml of supernatant was diluted to 100 ml. The recovery N 280 240 4 11
was performed at five different levels of spiking, in the range 0 280 240 5 9
of 80 to 120 % of the test level of concentration of the P 280 240 7 6
analytes, each in three replicates. Q 280 240 9 5
R 280 240 10 5
® All sets have 384 training pairs.
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parameters as given in Table 1, varying stepwise only the
spectral region and the wavelength interval.

Monitoring data:

Monitoring data sets are used for the internal validation
and terminating the training of the BPNN at an optimum
point to prevent over-fitting and retain generalization ability
of the network. Monitoring data set of same size was also
designed from the same spectra of LST and HCT standard
but paired in a different way than the one used for designing
calibration data set.

BPNN design:

ANN models are built iteratively by successive
optimizations of their inputs and topology. In the phase one,
BPNNs having three layers with varying input nodes (based
on the calibration set employed) twice the input nodes in
the hidden layer and two ncdes, corresponding to the
number of components, in the output layer were used to
optimize the best of possible calibration sets. The input and
output layer nodes had a linear transter function while the
hidden layer nodes had hyperbolic tangent transfer function
decided on the basis of preliminary studies. In phase two,
optimization of network architecture was done using the
best calibration set selected from phase one study. The
selected calibration set was used in the BPNN designs with
input nodes corresponding to the calibration set and the
two output nodes having linear transter function. Only the
number of nodes in hidden layer and their transter function
was varied this time in a factorial design.

Training the BPNN:

BPNNs were trained using the popular gradient descent
algorithm which performs a steepest-descent minimization
on the error surface in the adjustable parameters
hyperspace as described and popularized by Rumelhart
and McClelland'. Allthe BPNNs were trained with a learning
rate of 0.1%° and a momentum of 0.5. The training was
monitored to prevent memorization (over-fitting) with the
corresponding monitoring set after every 100 epochs (since
a fairly large monitoring set equal in size to the calibration
set was used) and terminated as soon as any of the following
criteria was met: (a) the root mean square error of monitoring
(RMSEM) rises while the root mean square error of training
(RMSET) is lowering (b) the RMSEM rises continuously for
1000 epochs or (c) the decrement between two successive
RMSEM is below a pre-specitied threshold of 0.1 ppm on
the average per epoch, and the network assumed to have
stabilized with adequate generalization capacity. The
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BPNNs were then frozen to prevent further training and
preserve the weights.

Validation of the BPNN:

All trained and frozen BPNNs were validated for their
modeling capability by testing with the spectral data
obtained from the standard physical mixture designs as
described above. Neuralyzer would then use the trained
BPNN model (in its buffer) to obtain the concentrations for
each component from the validation spectral files and
calculate the root mean square error of prediction (RMSEP)
and regression parameters which could be saved to hard
disk.

Tablet Analysis:

Spectra recorded from the tablet solutions were
analyzed by the chosen BPNN model and the
concentrations predicted for each solution were used for
calculation of the tablet content. Similarly LST and HCT
concentrations in the solutions prepared for recovery study
were also obtained from the respective spectra and
percentage recovery was calculated to determine the
accuracy of the method.

RESULTS AND DISCUSSION

The overlain absorption spectra (fig. 1) show strong
spectral overlap, which complicates the determination of
the individual drug concentrations from a spectrum of a
mixture. When considered separately, concentrations
between 2 to 22 mg/I for both LST and HCT were found to
be linear, with R? of 99.99% (goodness of fit) for each, slopes
of 0.036 and 0.052, intercepts of 0.0024 and -0.0026 and
residual standard deviation about the regression line being
0.0021 and 0.0005, respectively.

There are many pitfalls in the use of calibration models,
perhaps the most serious being variability in instrument
performance over time. Each instrument has different
characteristics and on each day and even hour the response
may vary. Therefore it is necessary to reform the calibration
model on a regular basis, by running a standard set of
samples, possibly on a weekly basis®. Like other regression
methods, there are constraints concerning the number of
samples, which at times may be limiting the development of
an ANN model. The number of adjustable parameters
(synaptic weights) is such that the calibration set is rapidly
over-fitted if too few training pairs are available leading to
loss of generalization ability. Theretore, calibration sets of
several hundred training pairs may often be necessary to
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get a representative distribution of the concentration across
their range. This makes it expensive in time and resources
to develop calibration mixtures physically in such large
numbers which is rarely possible in routine laboratory
studies and justifies our attempt to use mathematically
constructed calibration data set from individual spectra of
components.

The problem of deciding the best possible input space
in terms of the spectral region and intervals was taken up in
first phase using the eighteen calibration sets already
created and designing BPNNs for each of them as
mentioned above. Each BPNN was trained three times with
random initialization of weights and the RMSEP was
calculated using the validation set, consisting of synthetic
binary mixtures, along with RMSEM. All the root mean
square errors were calculated using the formula®

RMS = \/2 2 (y, —out;)* [mxn

y=) i=l

where y is the i-th component of the desired target Ys, out
is the i-th component of the output produced by the network
for the s-th input vector, m is the number of input vectors or
samples and n is the number of output variables. The results
are presented in Table 2.

Step-down multiple-stage testing process of
successive elimination of calibration sets was adopted by
repeatedly subjecting the results to one way ANOVA and

Hsu's Multiple Comparisons with the best* having the
lowest RMSEP, whenever p-value was significantly less than
0.05 was obtained. HSU's Multiple Comparison with best
provides confidence intervals for the difference between
each mean and the best of the other means which can be
used to eliminate levels (treatments) that are not the best.
When no significant difference among the calibration set
could be found the same process was repeated using the
best RMSEM for further round of elimination till no significant
difference was found among the sets. At this point four sets
H, I, K, L were found to show no significant difference among
them. Set H, which had the least mean RSMEP and low
standard deviation compared to others, was then chosen
from among these.

The calibration set H thus chosen was used to optimize
the BPNN configuration in the second phase by a factorial
design, with number of hidden neurons (7, 14 or 21) and
their transfer function (sigmoid or hyperbolic tangent) as
two factors.

Each model of BPNN was trained three times with
random initialization of weights and the root mean square
error of prediction was calculated using the validation set.
Analysis of the results, shown in Table 3, indicated that
there was significant difference (p-value < 0.01) with
respect to the transfer function used in the hidden layer,
sigmoid being better compared to hyperbolic tangent
function with respect to RMSEP and was preferred over the
hyperbolic tangent transfer function even though it offered

TABLE 2: SELECTION OF OPTIMUM CALIBRATION SET FOR BPNN MODELING."

Set Mean SD Mean SD Set Mean SD Mean SD
RMSEP x102 RMSEM x10 RMSEP x102 RMSEM x10+
x10* x103 x10! x103

A 1.0367 1.68 1.07 1.57 J 0.9100 0.00.819 1.68 1.97
B 1.1133 0.764 0.997 1.14 K 1.0100 0.458 1.23 2.29
C 1.2433 3.958 1.18 0.81 L 0.9733 0.115 1.41 1.78
D 1.1233 0.666 1.05 1.42 M 1.1433 0.586 1.72 1.50
E 1.0733 0.551 1.63 3.49 N 1.0833 0.586 1.62 2.06
F 1.3500 1.670 1.05 1.83 0] 1.1567 0.586 1.81 0.61

G 0.9333 0.902 1.69 2.62 P 1.1967 0.252 1.87 0.62
H 0.9233 0.666 1.31 1.14 Q 1.2067 0.416 1.79 0.68
| 0.9900 0.889 1.42 2.90 R 1.1000 0.608 1.70 0.31

* The selection is based on one way analysis of variance in combination with Hsu's multiple comparisons with the best.
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TABLE 3: BPNN HIDDEN LAYER CONFIGURATION

ANALYSIS.*
Neuron Transfer Function
Count Sigmoid Hyperbolic
Tangent
RMSEP | Epochs | RMSEP Epochs

7 0.060 10300 0.070 4500
7 0.065 10800 0.066 5400
7 0.062 11100 0.066 5900
14 0.061 9700 0.068 4200
14 0.060 11000 0.070 5200
14 0.063 11000 0.070 4300
21 0.064 9100 0.065 3200
21 0.063 10400 0.074 4300
21 0.062 10900 0.070 4900

® The hidden layer is optimized for the neuron count and
transfer function of the nodes in a factorial design with three
replicates.

the benefit of less epochs since the time taken was less
than 15 minutes in all cases. The limited variation in the
number of hidden neurons surprisingly had no significant
difference (p-value > 0.05) on the performance of the BPNN
in this case. The interaction between the two factors was
insignificant {p-value > 0.05). Therefore, a hidden layer with
the least neurons from the factorial design and sigmoid
transfer function was taken as optimum configuration. Based
on these results, the final BPNN model had an input of 14
neurons, an output of 2 neurons, both having linear transfer
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Fig. 3: Residuals plot for the prediction regression for
LST by BPNN.

The residuals versus the fitted value for the regression
of the predictions made for Losartan potassium by the
BPNN model.

function and a hidden layer of 7 neurons with sigmoid
transfer function. The 14 inputs correspond to absorbances
at wavelength points 290, 286, 282, 278, 274, 270, 266,
262, 258, 254, 250, 246, 242 and 238 nm.

The optimized BPNN model was validated for its
robustness by training the network using three different
calibration sets and monitoring sets and investigating their
prediction characteristics using the 75 synthetic binary
mixtures' spectral data, after eliminating the 5 consistent
outliers froma total of 80. The Regression characteristics of
the predictions are listed in Table 4 and the residual plots
versus fits are shown in fig. 3 and 4 for LST and HCT
respectively. These results imply that the BPNN model
performed well irrespective of the calibration data set and

TABLE 4: SYNTHETIC BINARY MIXTURE CONCENTRATION PREDICTION REGRESSION PARAMETERS.”

Model Losartan potassium Hydrochlorothiazide
Slope Intercept R2%°® SD¢ Slope Intercept R2%® SDe¢
BPNN-1 1.009 -0.040 99.95 0.063 1.012 0.002 99.85 0.061
BPNN-2 1.003 -0.032 99.96 0.059 1.010 -0.036 99.87 0.055
BPNN-3 1.005 -0.074 99.90 0.088 1.010 0.061 99.84 0.061

* All regressions are done predicted concentrations against the actual concentrations of the respective components. in all
cases the p-value was 0.005. "R* s coefficient of determination and r° % is known as the percentage fit. Estimated standard
deviation about the regression line, also known as the residual standard deviation.
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Fig. 4: Residuals plot for the prediction regression for
HCT by BPNN.

The residuals versus the fitted value for the regression
of the predictions made for Hydrochlorothiazide by the
BPNN model.

hence, rugged enough for periodic calibration necessitated
by conditions such as variability in instrument performance.

Spectra obtained from 36 tablet solutions prepared from
6 different weighings as described in the experimental
section were analyzed by the BPNN model and the average
content was calculated. The results are summarized in Table
5. The accuracy of the method for analysis of tablets was

TABLE 5: RESULTS OBTAINED USING BPNN MODEL
TO SIX TABLET SAMPLES OF LST AND HCT®

LST HCT
Sample 1 (mg)® 51.08 12.89
Sample 2 (mg)? 49.46 12.00
Sample 3 (mg)? 49.97 12.14
Sample 4 (mg)* 50.07 12.07
Sample 5 (mg)? 50.25 12.18
Sample 6 (mg)? 49.21 12.08
Average of samples (mg) 50.01 12.23
Relative Standard Deviation 1.31 2.70
Amount on the label (mg) 50.00 12.50
% of the reported content 100.0 97.84

*Actual concentrations calculated form the content of each
component in the tablets by the BPNN model.

further investigated using the recovery studies as described
earlier. The mean percentage recovery with BPNN model
was 100.0 and 100.4 with relative standard deviation of
1.27 and 1.58 for losartan potassium and
hydrochlorothiazide respectively which is very well
acceptable and reflects the models reliability without doubt

TABLE 6: RESULTS OBTAINED FOR RECOVERY STUDIES USING THE BPNN MODEL.

Sample { Analyte content (mg)* Added (mg)® Total (mg) Found (mg) Recovery (%)
LST HCT LST HCT LST HCT | LST HCT LST HCT

1 20.94 5.12 3.98 0.99 24.92 6.11 24.96 6.14 100.16 | 100.49

2 20.66 5.05 7.97 1.97 28.63 7.02 28.64 7.03 100.03 | 100.14

3 20.64 5.05 11.95 2.96 32.59 8.01 | 32.22 7.93 98.86 99.00

4 20.61 5.04 15.94 3.95 36.55 8.99 36.20 8.95 99.04 99.56

5 21.01 5.14 19.92 4.94 40.93 10.08 | 41.77 | 10.38 (102.05 | 102.98

Mean recovery 100.03 100.43
Standard deviation 1.27 1.58
Relative standard deviation 1.27 1.58

" The average weight of each tablet used in the analysis is 0.18371g.; each sample consists of separately weighed tablet

powder. ® Five different levels of spiking was done , in the range of 80 t0120 % of the test level of concentration of the

analytes.
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