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Anburaj et al.: β-Amyrin induces ROS-mediated apoptosis

It is aimed to investigate the effect of β-amyrin on p38 mitogen-activated protein kinase and Jun N-terminal 
kinase pathways and apoptosis in HeLa cells. HeLa treated cells were divided into 6 groups, group I- 
HeLa untreated cells as control, group II- dimethyl sulfoxide serve as vehicle control, group III- cisplatin 
as standard drug, group IV- β-amyrin-treated HeLa cells, group V- cells were pretreated with 100 μm 
N-acetyl-L-cystein for 1 hour and then treated with cisplatin and group VI- cells were pretreated with 
100 μm N-acetyl-L-cystein for 1 hour and then treated with β-amyrin. The antiproliferative effect was 
measured using the MTT assay. Genotoxic effects were studied using micronucleus assay. Total reactive 
oxygen species, nitric oxide and caspase 3 level were determined on a spectrofluorimeter and colorimeter. 
Protein expression was analyzed by immunoblotting. β-Amyrin (10-200 μm) and cisplatin (0.01-100 μm) 
had an inhibitory effect on the proliferation of cancer cells in a dose-dependent manner, with the IC50 values 
at 100 μm and 10 μm for β-amyrin and cisplatin, respectively. Western blot analysis revealed expressions 
of apoptotic pathway related proteins, Bcl-2, caspase-3, caspase-9, phospho-p38 mitogen-activated protein 
kinase and phospho-Jun N-terminal kinase, growth arrest and deoxyribonucleic acid-damage-inducible, 
beta in all groups. Genotoxic effects were observed after treatment with β-amyrin as well as with cisplatin. 
It was observed that HeLa cells showed significant elevation of total reactive oxygen species after β-amyrin 
treatment. Protein expression analysis showed that the β-amyrin upregulated phospho-p38 mitogen-
activated protein kinase, phospho-Jun N-terminal kinase and growth arrest and deoxyribonucleic acid-
damage-inducible, beta on HeLa cells. Increased phospho-Jun N-terminal kinase directly activated 
caspases and decreased Bcl-2 in HeLa cells. These results indicated that β-amyrin induced the apoptosis 
through reactive oxygen species-mediated mechanism by activating p38 mitogen-activated protein kinase 
and Jun N-terminal kinase through transcriptional factor, GADD45β. In turn, activated Jun N-terminal 
kinase directly activated caspase-9 and caspase-3 and destined the HeLa cells to apoptosis.
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Cancer is one of the most critical public health issues 
and a leading cause of human death worldwide[1,2]. 
Cervical cancer is generally caused by human 
papilloma virus (HPV) infection is the first prevalent 
gynecological cancers worldwide[3,4]. Recent data 
indicated that cervical cancer became the second 
ranked in morbidity and mortality in women after breast 
cancer[5]. Early diagnosis of cervical cancer is curable 
but metastasis is poor to prognosis. Approximately  
50 % of cancer patients die at metastasis stage[6]. 

HeLa cell line is the one of the most important HPV 
type 18 infected-cervical cancer cells and widely used 
in various experimental studies of cervical cancer[7,8]. 
Recent reports have shown that the induction of 
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apoptosis is considered as a most promising approach 
to destroy cancer cells in the field of cancer biology[9,10]. 
Apoptosis is a programmed cell death by which many 
intracellular events play a crucial role to remove the 
unwanted cells. Disorders in the apoptosis lead to many 
diseases including neurodegenerative diseases and 
autoimmune diseases[11]. Cancer cells stop the apoptosis 
in order to metastasis but apoptosis mediated cell death 
eradicate the cancer cell without harming normal cells 
and without causing inflammatory response. Therefore, 
apoptosis targeting pathways in the treatment of cancer 
could be a useful therapeutic approach[12].

Reactive oxygen species (ROS) is secondary metabolites 
in aerobic metabolism and its low production in the 
cellular level regulates many signaling pathways 
including Jun N-terminal kinase (JNK) and p38 mitogen-
activated protein kinase (p38 MAPK) pathways. But its 
overproduction leads to oxidative stress. Apart from 
controlling the various signaling pathways ROS is also 
assumed to induce apoptosis pathways by promoting 
transcription of proapoptotic genes[13]. Many anticancer 
agents including paclitaxel and tamoxifen are believed 
to kill cancer cells by apoptosis pathways. However, 
these compounds pose adverse side effects during 
cancer treatment, therefore it’s necessary to develop 
new drugs with little side effects or without side effects 
for managing this disease. It is strongly believed that 
plants are considered as an attractive natural sources 
with antitumor, antioxidant and antiinflammatory 
activities. More than 60 % of currently used anticancer 
drugs are derived from plants and marine sources and 
also many scientific studies have demonstrated the 
potentiality of plant-derived compounds against many 
cancers including cervical cancer[13,14].

These plant compounds eliminate cancer cells using 
different channels but eventually all these compounds 
eradicate cancer cells via apoptosis and thus it is 
important to discover more specific targeted apoptosis 
inducing plant-derived compounds. Several studies 
reported that plant derived compounds selectively 
eliminate cancer cells through ROS metabolism[15,16]. 
As ROS is a major attributed factor of regulating the 
apoptosis pathways and also involved in destroying 
cancer cells, it is important to unravel the ROS-
mediated apoptosis mechanism in the cancer cells.

Triterpene compounds are well known for 
antiinflammatory, antiapoptotic activity in various cell 
lines. Many in vitro and in vivo studies have shown 
that oleanolic acid and other oleanane triterpenoids 
modulate intracellular signaling pathway and exert 

antitumor activity against various cancer cell lines[17]. 
β-Amyrin is a pentacyclic triterpenes found in many 
plants and barks of trees such as Protium kleinii, 
Protium hepta phyllum and Moldenhawera Nutans[18-20]. 
Previous studies showed that β-amyrin possess different 
pharmacological activities such as antiinflammatory, 
antifibrotic and antidiabetic activities. Several studies 
reported that pentacyclic triterpenes such as ursolic 
acid and oleanolic acid which are structurally similar 
to β-amyrin can suppress the cancer development and 
metastasis through the inhibition of angiogenesis[21,22]. 
However, no studies analyzed the effect of β-amyrin 
on ROS mediated signaling that induce apoptosis. 
Therefore, we investigated the effect of β-amyrin role 
in controlling cervical cancer through ROS-mediated 
apoptosis.

MATERIALS AND METHODS

HeLa cells were obtained from National Center for Cell 
Science (Pune, India) was maintained and grown in a 
humidified incubator at 37° with 5 % CO2. Cells were 
grown as a monolayer in plastic tissue culture flasks 
in Dulbecco’s modified Eagle’s medium (DMEM) 
Gibco, USA). The medium was supplemented with  
10 % fetal bovine serum (FBS) and antibiotics, penicillin  
50 IU/ml, streptomycin 3.5 μg/ml and gentamycin  
2.5 μg/ml. All these were procured from Gibco, Grand 
Island, NY, USA. Triton X-100 (Cat No. 93443),  
0.1 mg/ml RNase (R4642) and 40 µg/ml propidium 
iodide (PI, P4170) were all procured from Sigma-
Aldrich.

Cell viability assay:

Cells were seeded in 96-well plates at a density of 
5×103 cells/well in 200 μl DMEM containing 10 % 
FBS overnight. Non-adherent cells were removed by 
gentle washing after 24 h. Cells were replaced with 
serum-free medium with varying concentrations of 
β-amyrin (10-200 μm) and cisplatin (0.01-100 μm). A 
negative control containing serum-free medium with 
dimethyl sulfoxide (DMSO) was also evaluated. After 
72 h of treatment, the plates were incubated with 20 μl 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) solution (5 mg/ml) for 3 h at 37º. The 
formazan was dissolved in 150 μl/well DMSO and the 
absorbance was detected at 590 nm using a microplate 
reader (Bio-Rad, USA). Cell viability was expressed 
as percentage of untreated cells, which served as 
the negative control group and was designated as  
100 %. The results were expressed in percentage of the 
negative control. The median inhibitory concentration 
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(IC50, defined as the drug concentration at which cell 
growth was inhibited by 50 %) was assessed from the 
dose-response curves[23]. 

Experimental groups:

The experiment was divided into six groups, group 
I- HeLa untreated cells served as control, group  
II- DMSO-treated HeLa cells served as vehicle 
control, group III- 10 μm cisplatin-treated HeLa cells, 
group IV- 100 μm β-amyrin-treated HeLa cells, group  
V- cells were pretreated with 100 μm N-acetyl-L-cystein 
(NAC) for 1 h and then treated with 10 μm of cisplatin 
and group VI- cells were pretreated with 100 μm NAC 
for 1 h and then treated with 100 μm of β-amyrin.

Micronuclei assay by flow cytometry:

Flow cytometry provides a convenient research tool to 
determine the frequency of micronuclei. The in vitro flow 
cytometry-based micronucleus (MN) assay[24] provides 
an alternative to the traditional MN genotoxicity assay 
that has potential use as a rapid screening assay.

Sample preparation for MN analysis:

Cells were seeded at 1×105 in 60 mm dishes. After 
removing non-adherent cells by gentle wash, the 
cells were treated with 10 μm cisplatin and 100 µm 
β-amyrin, respectively. To arrest the cells at cytokinesis 
stage at 37°, cytochalasin-B (3 μg/ml) was added. The 
cells were harvested and fixed by adding ice-cold 70 % 
ethanol after 72 h. For the experiment, the samples were 
centrifuged for 10 min at 1500 rpm. After discarding 
the supernatant, the pellets were resuspended in PBS 
until ethanol removed completely. Following this, the 
cells were then resuspended in PBS (500 µl) containing 
NaCl (584 mg/l), sodium citrate (1000 mg/l), 0.5% 
Triton X-100, 0.1 mg/ml RNase and 40 µg/ml PI in 
a dark room. Triton X-100 and RNase were added to 
permeable the cell membrane and eliminate RNA. 
Samples were protected from light and allowed to 
equilibrate to room temperature before flow cytometric 
analysis was performed. After 45 min incubation at 37°, 
the cells were transferred to a FCM tube and analyzed 
on a flow cytometer (FACS Calibur, Becton Dickinson 
Biosciences), equipped with an air cooled argon laser 
providing 15 mW at 488 nm with standard filter setup 
and 100 000 events were collected.

Bivariate dot plots displayed on logarithmic scales 
were used to register signals of DNA (FSC vs. FL2-H 
or SSC vs. FL2-H). Nuclei and MN were discriminated 
from non-specific debris using the electronic gates. The 

percentage of MN frequency was calculated based on 
the acquisition of 100 000 events using the formula, 
% of MN=(total MN/total N)×100, MN indicates total 
micronuclei and N indicates total nuclei.

Determination of total ROS and nitric oxide (NO):

Cells were washed with PBS and loaded with CM-
H2DCFDA for 15 min. Fluorescence of the H2DCFDA 
was read at 480 nm excitation/520 nm emission in a 
Hitachi F2000 spectrofluorimeter. The results were 
expressed as nM/mg of protein. Nitrite (NO2) and 
nitrate (NO3) in HeLa cells were measured using NO 
assay kit (ab65328, Abcam) according to manufacturer 
protocol.

Determination of caspase-3 for colorimetric assay:

Caspase-3 activity was determined using a colorimetric 
method in which the presence of caspase-3 lysate 
produces p-nitroaniline, which generates a yellow 
color. Cells plated in a sterile 24-well plate at a 
concentration of 1×105 cells/ml and were incubated 
at 37° in 5 % CO2 for 72 h. After this period, the 
determination of caspase-3 was performed according 
to the manufacturer’s specification (Sigma-Aldrich, St. 
Louis, MO) using an ELISA reader. The analyses were 
the average of three replicates, and the results were 
expressed in ΔmOD405 nm/min[25].

Western blotting:

Cells were seeded in 24-well plates at a density of  
5×104 cells/well in 1 ml of medium containing 10 % FBS 
overnight. Non-adherent cells were removed by gentle 
washing after 24 h. Cells were lysed by the addition of 
cold RIPA buffer (150 mM NaCl, 50 mM Tris HCL,  
0.1 % SDS, 1 % Triton X-100, 1 mM PMSF, 2 mM NaF, 
Na3VO4, β-glycerophosphate and 2 mM EDTA, and 
fresh protease inhibitor cocktail (Cat No. P8340, Sigma 
Aldrich), and the cell lysate was centrifuged at 14 000 
rpm at 4° for 20 min. The supernatant was harvested 
and analyzed for protein content using the BCA method 
(Cat No.23227, Pierce, USA). Protein was denatured in 
sample buffer, then separated on 12 % SDS-PAGE, and 
transferred to polyvinylidene difluoride membranes 
(semidry transblot system). The blots were blocked 
for 1 h at room temperature with Tris-buffered saline 
(TBS, 50 mM Tris-HCl, pH 7.5, 150 mM NaCl) 
containing 5 % non-fat milk. The blots were washed 
three times with TBST (50 mM Tris-HCl, pH 7.5,  
150 mM NaCl, and 0.02 % Tween 20) and incubated 
with Bcl-2, caspase-3, caspase-9, phospho-p38 MAPK, 
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and phospho-JNK, GADD45β (Santa Cruz, CA, 1:1000 
dilutions) antibodies at 4° overnight. The blots were 
incubated for 1 h at room temperature with secondary 
antibody (1:5000 dilutions) and detected by ECL 
detection reagent. To ensure that an equal amount of 
sample protein was applied for electrophoresis, β-actin 
was used as an internal control. Densitometric analysis 
was done using ImageJ software.

Statistical analysis:

Data were presented as mean±SEM. Each value is the 
mean of at least three separate experiments. Statistical 
evaluation was performed using an unpaired Student’s 
t test. p values <0.05 were considered to be statistically 
significant. Data were analyzed using SPSS software 
(version 16.0).

RESULTS AND DISCUSSION

The effects of β-amyrin and cisplatin on the proliferation 
of HeLa cells were examined. Fig. 1A and B 
showed the percentage of viable cells obtained in the 
MTT assay with varying concentrations of β-amyrin  
(5-200 µm) and cisplatin (0.01-100 μm). The 
significantly dose-dependent reduction on the cell 
proliferation was observed in cells treated with both 
β-amyrin and cisplatin. After 72 h of incubation, the 
IC50 values for β-amyrin and cisplatin were 100 µm 
and 10 μm, respectively. Interestingly cell viability 
slightly but not significantly increased with increasing 
β-amyrin concentration. Moreover, there is a time- 
and dose-dependent increase in cell death of HeLa 
cells, reaching approximately 60 % of cells after  
36 h of treatment with 100 µm β-amyrin. The doses 
of 150 and 200 µm showed an increased cell death of 
approximately 90 % after 36 h treatment (fig. 1C).

The effect of β-amyrin on total ROS level in HeLa 
was determined using spectrofluorimetric method 
(fig. 2A). It was observed that HeLa cells showed 
significant elevation of total ROS after cisplatin and 
β-amyrin treatment (p<0.001) compared to control and 
vehicle groups, but there is no significant differences 
were observed between cisplatin and β-amyrin-treated 
HeLa cells. β-amyrin ROS elevating action was further 
confirmed by using NAC. NAC pretreatment to cisplatin 
and β-amyrin group showed significant (p<0.001) 
decrease in ROS level compared to cisplatin and 
β-amyrin-treated HeLa cells. However pretreatment of 
cells with 3 mM of NAC reversed ROS accumulation 
close to the untreated control levels. This indicated that 
ROS could be the major factor for the drug-induced 

Fig. 1: Antiproliferative effect of Cisplatin and β-amyrin

 
Fig. 2: Effect of β-amyrin on total ROS and NO level in HeLa 
cells with references to NAC treatment
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apoptosis. Fig. 2B shows the effect of β-amyrin on 
nitrate-nitrite levels in HeLa cells. Results showed 
that levels of nitrite-nitrate were significantly higher in 
control groups and their levels decreased significantly 
(p<0.001) after cisplatin and β-amyrin treatment.

Fig. 3 showed the Gating image of the MN frequencies. 
Baseline micronuclei frequency obtained in untreated 
control cells were 0.86±0.09. There were no significant 
differences between the DMSO and the control group. 
There was a significant increase (p<0.001) in MN 
frequencies of cisplatin-treated cells when compared 
to both HeLa cells and DMSO+HeLa cells groups. A 
significant (p<0.001) frequency of MN was obtained in 
cells treated with β-amyrin 3.25±0.53 when compared 
to both HeLa cells and DMSO+HeLa cells groups. 
There is no significant changes observed between 
cisplatin and β-amyrin-treated HeLa cells (fig. 4).

The activity of cleaved caspase-3 in β-amyrin 
and cisplatin-treated HeLa cells were determined 
colorimetrically at ΔmnOD405 nm/min (fig. 5). The 

activity of caspase-3 were observed to be decreased 
in controls groups, whereas β-amyrin and cisplatin 
treatment significantly (p<0.001) increased the 
caspase-3 activity compared to both control groups.

The ROS-mediated apoptosis on HeLa cells was 
induced by β-amyrin through activating various proteins 
involved in p38 MAPK pathway in order to cause 
programmed cell death of cancer cells. The expressions 
of various proteins like phospho-p38 MAPK, phospho-
JNK, GADD45β, Bcl-2, caspase-9 and caspase3 were 
done by using immunoblotting (fig. 6A). The densities 
of bands corresponding to all these proteins were 
normalized on the basis of β actin and analyzed relative 
to that of the normal control group, as shown in fig. 6B.

The phosphorylated kinases like p38 MAPK, JNK and 
transcription factor GADD45β involved in the ROS-
mediated apoptosis expression were downregulated in 
untreated HeLa cells as well as DMSO-treated HeLa 
cells, no significant differences were found between 
these groups. HeLa cells treated with β-amyrin and 
cisplatin showed significant (p<0.001) upregulation of 
all proteins compared to both control groups but did not 
show any significant differences among drug-treated 
cells.

As observed earlier, the activity of caspase-3 was further 
confirmed by immunoblotting. Expression of apoptotic 
proteins, caspase-9 and caspase-3 decreased in the 
untreated HeLa cells, DMSO-treated HeLa cells, while 
in cisplatin- and β-amyrin-treated cells the expression 
was significantly (p<0.001) increased compared to both 
control groups. But there is no significant difference 
was observed between cisplatin- and β-amyrin-treated 
HeLa cells.

Expression of antiapoptotic protein Bcl-2 in HeLa cells 
was analysed using the Western blot. Bcl-2 expression 
was upregulated in HeLa cells as well as in DMSO-
treated cells. Treatment of HeLa cells with β-amyrin 

Fig. 3: Genotoxicity effect of cisplatin and β-amyrin treated 
HeLa cells by micronucleus assay

 
Fig. 4: Graphical representation of the micronuclei frequencies
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Fig. 5: Colorimetric analysis of caspase-3 activity on HeLa cells 
before and after β-amyrin with references to NAC treatment

and cisplatin significantly downregulated Bcl-2 protein 
expression, when compared to the normal control 
group. Also, Bcl-2 protein expression in cisplatin-
treated HeLa cells showed no significant differences 
compared to β-amyrin-treated HeLa cells.

β-Amyrin impact on ROS-induced apoptosis is further 
confirmed by the NAC pretreated group. p38, JNK, 
GADD 45β, caspase-9, caspase-3 and Bcl-2 showed 
no significant changes in NAC-pretreated cisplatin 
and β-amyrin groups compared to HeLa cells and 
DMSO+HeLa cells.

Metastasis and proliferation are the main pathological 
factors of cancer. It mainly occurs due to abnormality 

in apoptotic molecular machinery, which leads to 
survival of metastatic cells in cancer.  To minimize or 
prevent the proliferation of cancer cells, the therapeutic 
agents are designed to induce various apoptosis signal 
transduction to destroy the cancer cells. Many reports 
have shown antiproliferative properties of triterpenes 
against multiple tumor cells. In fact, to improve their 
activities, synthetic analogs of oleanolic acid have 
been developed and are under clinical evaluation as 
antitumor agents for hematologic malignancies[26-29]. 
Based on the previous evidences, chosen β-amyrin, a 
natural triterpene with oleanonic structure was chosen 
to study on HeLa cells.

The appearance of MN is closely linked to DNA 
damage process and genome instability. Monitoring 
the frequency of micronuclei is therefore widely used 
to assess the environmental or endogenous stresses 
that damage the genome[30]. The increased formation of 
micronuclei is usually an indication of increased DNA 
damage or mutation. It is characteristically found in all 
types of cancer cells. Increased frequency of micronuclei 
in the cisplatin- and β-amyrin-treated groups was 
observed. Cisplatin exhibited growth inhibition and 
cytotoxicity in a dose-dependent manner, with an IC50 
value of 10 μM on HeLa cells. Cisplatin forms highly 
reactive, charged, platinum complexes which bind to 
nucleophilic groups such as GC-rich sites in DNA, 
inducing intra and inter strand DNA cross-links, as well 
as DNA-protein cross-links. These cross-links result in 
cell growth inhibition and apoptosis. Studies reported 
that the inhibition of transcription and replication due 
to cisplatin-induced DNA lesions and the subsequent 
generation of DNA strand breaks activate the ATR 
and ATM kinases as well as the p38 MAPK/MK2 
pathway[31,32]. Present study proved for the first time that 
β-amyrin is a potent clastogenic, which produced a large 
number of DNA lesions. Increased ROS production 
in HeLa cells may occur due to the prooxidative shift 
in the redox state and impaired glucose clearance in 
mitochondria, which directly causes mitochondrial 
oxidative stress. Prooxidative shift observed in all 
cancers is mainly mediated by an increased availability 
of mitochondrial energy substrate and inflammatory 
oxidative conditions. Chronic inflammatory tissue 
contains large amounts of NO and derivatives ROS. NO 
and ROS generally cause direct and indirect damage 
to DNA and other genetic material[33]. The significant 
balance and interaction between NO and ROS has a 
foremost role in the etiology of a tumor[34]. All these 
conditions involved with pathological changes are 
indicative of a dysregulation of signal cascades or gene 

Fig. 6: Immunoblotting analysis of ROS induced various 
proteins on β-amyrin-treated HeLa cells
(■) P-p38MAPK, (■) P-JNK, (■) GADD45β, (■) BC12, (□) 
caspase 9, (■) caspase 3
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expression that leads to increase ROS production in 
cells[35].

In this study, increased total ROS level and NO level 
were found in HeLa cells and DMSO-treated HeLa 
cells. Cisplatin and β-amyrin treatment on HeLa cells 
increased total ROS further and decreased NO level, 
which was confirmed by NAC pretreatment to these 
cells. The increased ROS and NO in HeLa cells might 
be ROS derived from NO•, which are released from 
inflammatory cells and act on neighboring dividing 
cells leading to somatic mutations in critical cancer-
causing genes. NO• produced by inducible nitric 
oxide synthase in solid tumors has been implicated in 
enhanced vascular permeability and increased tumor 
blood flow and hence sustained tumor growth[35]. 
Chronic inflammation has also been considered to be 
a risk factor for a variety of human malignant tumors, 
particularly cervical carcinoma. Even though increased 
ROS production were observed in all types of cancer 
cells still these cancer cells does not undergone ROS-
mediated apoptosis, this might be due to the increased 
NO level. Generally, increased NO have the direct 
opposing effect on ROS-mediated apoptosis by 
inhibiting heat shock protein (HSP)[36,37]. Recent studies 
using triterpenoids supported the results that β-amyrin 
increased further total ROS levels in HeLa cells[38-40]. 
As stated earlier, β-amyrin, a triterpenes with oleanolic 
compound structure, which increased ROS production 
further and induces ROS-mediated apoptosis. This 
action might occur due to its antiinflammatory 
property. This property cause’s decreased production 
of inflammatory mediators thereby reducing the 
NO level which might lead to activate HSP thereby 
induces ROS-mediated apoptosis of HeLa cells. Apart 
from controlling inflammatory oxidative condition, 
β-amyrin also causes mitochondrial oxidative stress 
to induce ROS-mediated apoptosis by activating p38 
and JNK signaling pathway and these results were 
discussed further in this study. JNK and p38 MAPK 
family members function in a cell context-specific and 
cell type-specific manner to integrate signals that affect 
proliferation, differentiation, survival and migration. 
Consistent with the importance of these events in 
tumorigenesis, JNK and p38 MAPK signalling is 
associated with cancers in humans and mice[41]. In 
the present study, β-amyrin was found to activate/
phosphorylate p38 MAPK, JNK signaling in HeLa, 
which in turn activated the transcription factor GADD 
β45 and β-amyrin also activated p38 and JNK pathway 
to induce apoptosis of HeLa cells. Many studies have 

shown that these two pathways induced apoptosis in 
cancer cells[42,43]. Several factors are involved in the 
activation of these pathways. ROS is considered as 
a one of the most important factor that activate these 
signaling pathway to induce cancer cell death[44]. Many 
synthetic and plant-derived triterpenoids have potential 
anticancer activities[45-49]. Recent studies showed that 
triterpenoid mainly induced apoptosis by targeting 
ROS-induced activation of JNK and p38 MAPK, 
which further activate caspases[50]. Recent reports have 
provided evidence that JNK activated caspases[51]. 
Consistent with these findings, in the present study 
β-amyrin activated p38 MAPK and JNK pathways in a 
caspase-dependent manner. Activation of transcription 
factor GADD45β by JNK further leads to cleave the 
procaspase 9 and increased caspase 9 and caspase 3 
expressions to induce ROS-mediated apoptosis. 
Activation of these signaling pathways by β-amyrin 
not only cleaved the caspase 3 but also activated 
antiapoptotic protein Bcl-2 by phosphorylation. Several 
studies have reported that the antiapoptotic function of 
Bcl-2 depended on its phosphorylation[52]. p38 MAPK 
and JNK are involved in phosphorylation of Bcl-2, 
resulting in increased apoptosis. Stress kinase p38 was 
shown to play a proapoptotic role after various insults 
and was identified as one of kinases able to directly 
phosphorylate Bcl-2[53]. Antiapoptotic function of Bcl-2 
has been disturbed due to its phosphorylation in the 
cells treated with taxol or other anticancer agents[54]. 
Consistent with these findings, it was found that 
β-amyrin and cisplatin treatment decreased the levels 
of Bcl-2 in HeLa cells.

In conclusion, ROS play an important role in β-amyrin-
induced apoptosis in human cervical adenocarcinoma 
(HeLa) cell line. The mechanism by which β-amyrin 
induced apoptosis involved the following steps. 
Chronic inflammation and mitochondrial oxidative 
stress induce rapid generation of ROS, which is 
required for subsequent activation of apoptosis 
by β-amyrin. ROS generation by β-amyrin occurs 
mainly in the mitochondria. Apoptosis induced by 
β-amyrin is mediated through the activation of p38, 
JNK and activated GADD45β, which in turn activates 
mitochondrion-dependent caspase activation pathway, 
which is negatively regulated by the antiapoptotic Bcl-
2 protein.
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