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Review Article

Prodrugs are derivatives of drug molecules that are 
pharmacologically inactive but require either chemical 
or enzymatic transformation to release the active drug 
in vivo in order to exert a pharmacological effect. 
Prodrugs have better delivery properties that surpass 
the parent drug molecule[1]. Prodrug concept is justifi ed 
because it enables the active drug to overcome the 
barrier that would impede it from reaching the site of 
action to exert the required pharmacological activity. 
Some of the barriers that the prodrug approach helps 
to surmount are as follows, low bioavailability due 
to poor aqueous solubility (corticosteroids); poor 
permeability or absorption (ampicillin); high fi rst 
pass metabolism (propranolol); metabolic instability 
leading to short half-life, (dopamine); poor site 
specifi city (anticancer agents); incomplete absorption 
(epinephrine); unfavourable organoleptic properties 
(chloramphenicol); diffi culties during formulation and 
adverse effects and toxicity[2-4].

The prodrug approach is rapidly becoming a crucial 
part in the stratagem of delivery of drugs. The prodrug 
strategy implementation in the last 20 y has led to 
a steady advancement in the biopharmaceutical, 
physicochemical and/or pharmacokinetic attributes 
of the pharmacologically active compounds. The 
success of the prodrug approach can be measured by 
examining how many prodrugs are currently on the 
market. Around 10 % of marketed medicines can be 

categorized as prodrugs currently, and also that during 
2008, 33 % of approved small molecular weight drugs 
were prodrugs[5-7]. The objective of this review is to 
provide the researchers with a compilation of which 
carriers would be suitable for prodrug synthesis and 
what would be their benefi ts.

Classifi cation of prodrugs:

According to Wermuth prodrugs can be divided 
into two main categories, bioprecusors and carrier-
linked prodrugs[8]. Bioprecursors do not have a 
promoiety or carrier but yield the active compound 
upon biotransformation. A bioprecursor prodrug 
is transformed chemically through hydration (for 
example, lactones such as some statins), reduction 
(for example, sulindac, platinum (IV) complexes) or 
oxidation (for example, dexpanthenol, nabumetone) or 
metabolically to the active agent[5,9-11].

Carrier-linked prodrugs are for drugs with major 
drawbacks, which are linked to a nontoxic carrier or 
promoiety through covalent linkage to change or get 
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rid of their undesirable physicochemical properties. 
These prodrugs subsequently undergo enzymatic or 
non-enzymatic cleavage to release the active drug 
moiety (fi g. 1)[12,13]. The main groups of carrier-
linked prodrugs are amides and esters. Other groups 
include carbamates, phosphates, oximes, carbonates, 
N-Mannich and imines bases.

Based on the essential characteristics of the carrier that 
is used, the carrier-linked prodrug can be classifi ed 
further into, double prodrugs and mutual prodrugs. 
Double prodrug is derivatized further in a manner 
that only enzymatic conversion to prodrug is possible 
before the latter is able to cleave and release the active 
drug. A number of benzodiazepines are insoluble 
in water and therefore prodrugs which are water 
soluble are required for injections. Double prodrugs 
of benzodiazepines are prepared in which rate of 
cyclisation is infl uenced by the nature of amino 
acid carrier group (fi g. 2)[14]. Macromolecules such as 
proteins, polymers, peptides, dextrans, polysaccharides, 
and cyclodextrins (CDs) can be employed as carriers in 
order to form macromolecular prodrugs. Site-specifi c 
prodrugs, where a carrier transports an active drug to a 
given targeted site.

Mutual prodrugs are those in which, another active drug 
is utilized as a carrier rather than some inert molecules. 
It comprises of coupling two pharmacologically active 
agents in such a way that each active agent behaves as 
a promoiety for the other active agent and vice versa. 

The mutual prodrug carrier selected would have 
additional biological action that might be absent in 
the parent drug or both carrier and the parent drug 
might have the same biological action, which ensures 
synergistic action or some additional benefi t (e.g. 
sultamicilin, a mutual prodrug of ampicillin and 
sulbactam)[15]. The carrier can also serve as a drug that 
helps to target the parent drug to a given site or cells 
or organ or can improve a drug’s site specifi city (e.g. 
sulfasalazine, mutual prodrug of 5-aminosalicylic acid 
(5-ASA) and sulfapyridine)[16]. It can also be utilized to 
subdue the parent drug’s side effects too (e.g. benorilate, 
mutual prodrug of paracetamol and aspirin)[17].

The benefi ts of carrier-linked prodrugs[18,19] include, an 
increase in absorption; pain relief on the injection site; 
reduction of GI irritation; masking of unpleasant taste; 
lowering toxicity; reduction of metabolic inactivation; 
increasing chemical stability and prolongation or 
shortening of the duration of action. 

Criteria for carrier-linked prodrugs:

Certain criteria need to be satisfi ed for a carrier-linked 
prodrug to be a well-designed[19]. A covalent bond 
binds the carrier to the drug. The prodrug needs to be 
inactive or rather less active compared to the parent 
drug. The link ought to be bioreversible. To make 
sure that the site of action has effective drug levels, 
the active form generation must occur with rapid 
kinetics. The carrier and prodrug released after non-
enzymatic or enzymatic hydrolysis must be nontoxic. 
A carrier-linked prodrug bioavailability is modulated 
through the use of a transient moiety. In case of carrier 
prodrugs, lipophilicity is a subject of extensive changes 
of the parent molecule. The bioactivation process is 
exclusively hydrolytic, although at times, it is a redox 
system. 

Carriers or promoieties:

The carrier or promoiety changes the drug’s physical 
attributes to increase fat or water solubility or provide 
site-directed delivery. The choice of which carrier to 
use is dependent on the prodrug’s purpose, the parent 
drug’s available functional groups, the prodrug’s 
enzymatic and chemical conversion mechanisms 
to parent drug, the carrier’s safety, and the ease of 
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Fig. 1: Schematic representation of carrier-linked prodrug
A drug ( ) is linked with carrier ( ) through covalent 
linkage ( ) during chemical prodrug formation (A). Prodrug 
subsequently undergoes chemical or enzymatic cleavage in vivo 
(B) to release active drug and inert carrier
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Fig. 2: Double prodrug of benzodiazepines
Double prodrug (A) of benzodiazepines gets converted 
to prodrug (B) after cleavage of amide bond by enzyme 
aminopeptidase. Prodrug (B) further undergoes cyclisation 
and gets converted to active drug (C). Rate of cyclisation is 
infl uenced by nature of amino acid carrier group and also the 
nature of R’, R’’ and R’’’
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manufacturing[20]. Correct choice of a carrier is the 
most important part of prodrug design. It should be 
carried out with respect to the state of the disease, the 
dosage, and the therapy duration. As single parent drug 
can be derivatized to several prodrugs, this change is 
due only to the change in nature of promoiety. This 
difference in the promoiety varies the cleavage of drug 
and promoiety bond[21].

Criteria for carriers:

In an ideal situation, the carrier should not have 
intrinsic toxicity. The carrier should also be non-
antigenic and non-immunogenic, and should not 
accumulate in the body. Instead, the carrier should 
have satisfactory functional groups for adequate 
loading capacity and drug attachment. It should also 
be relatively easy to produce at a low cost. A carrier 
must remain stable under prodrug administration 
conditions, chemical manipulation and autoclaving. It 
should undergo biodegradation to inactive metabolites. 
Its characterization should be easy, and it needs to 
mask the liganded drug’s activity until the active 
agent released at the desired action site. The carrier is 
expected to have some biological activity of its own in 
relation to a mutual prodrug approach[5,7,11,22].

Lipids as prodrug carriers:

Lipidic prodrugs, also known as drug-lipid conjugates, 
have the lipid moiety covalently bound to a drug. 
Drug-lipid conjugates are prepared so as to exploit 
the advantage of the metabolic pathway of the lipid 
biochemistry, and thus allow for targeting of organs or 
overcome delivery problems. Pharmacological half-life 
and pharmacokinetics of the drug can be improved by 
using lipid carriers, thus allowing for reduced dosing 
frequency. Lipids have other advantages such as an 
increase in absorption through intestines in regards to 
oral drug absorption and to the central nervous system 
for brain delivery. In addition, drug targeting may be 
enhanced using the lipid delivery systems. To target 
the liver, lipids are bound with endogenous proteins in 
the blood, which carries the lipids to the organ[23,24].

Various natural lipid carriers are commonly used in 
the design of lipid prodrugs, including glycerides, 
fatty acids, and phospholipids. In designing the fatty 
acid-linked conjugates, the drugs are linked either 
to the ω-position at the end of the carbon chain or 
to the free carboxylate group (fi g. 3a). In case of 
conjugation to a carboxylate group, a drug containing 
an amino group or alcohol is linked to the fatty acid, 

which results in an ester or amide-linked conjugate, 
respectively. These conjugation strategies generally 
involve the use of an activating agent, such as N,N′-
carbonyldiimidazole or carbodiimide, to convert the 
poor –OH leaving group to a better one, followed 
by the addition of an amine- or alcohol-containing 
drug[25,26]. This approach is the most common method 
of linking fatty acids and has been utilized for many 
parent drugs including non-steroidal antiinfl ammatory 
drugs (NSAIDs, ketorolac)[27], angiotensin-
converting-enzyme inhibitors (enalapril)[28], 
nucleosides (zidovudine)[29] and testosterone[30]. 
Conjugation to the ω-position is preferable in cases 
where increased albumin binding and cell membrane 
transporter properties are preferred. For this method, 
an ω-modifi ed fatty acid, such as amino[31] or thiol[32] 

analogue, is utilized to link to the parent drug.

Similar to fatty acids, glyceride prodrugs also take 
advantage of natural biosynthetic pathways. Glyceride 
conjugates are linked to orally administered drugs 
in order to reduce gastric damage of certain drugs 
(NSAIDs including aspirin[33], indomethacin[34], 
ibuprofen[35]) by preventing their release in the stomach, 
to reduce enzymatic degradation in the intestines, to 
target the lymphatic route, or to enhance their delivery 
through the blood-brain barrier[36]. In this approach, 
drugs containing a carboxylate group are linked to the 
glyceride via an ester bond (fi g. 3b).

The conjugation chemistry is also similar to fatty acid 
conjugation, involving the use of an activating agent 
or acid halide (chloride) derivative. In phospholipid-
linked prodrugs, the drugs are either attached to 
the glycerol backbone or to the phosphate group 
(fi g. 3c). Drugs that are linked to the phosphate group 
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are generally antiviral nucleoside analogues. These 
prodrugs take advantage of drug release inside the 
cell in a monophosphate form, bypassing possible 
defi ciencies in nucleoside kinase activity. Drugs 
attached to the glycerol backbone utilize the natural 
absorption pathway for phospholipids to cross the 
intestinal lumen or blood-brain barrier[23].

Amino acids as prodrug carriers:

Amino acids do have proven record of being 
successfully used as promoieties in synthesis of 
prodrugs. In recent times, a hot fi eld in regards to 
drug delivery research has concentrated on developing 
amino acid prodrugs for different active transporter 
targeted delivery goals[37]. Most of amino acid 
prodrugs are either esters or amides, in which amine or 
carboxylic group of amino acid is attached to hydroxyl, 
amine or carboxyl group of drug moiety. Amino acids 
are biocompatible and easily ionisable. The amino 
acid prodrugs improve oral delivery of drugs, which 
have poor permeability and solubility. When an amino 
acid is introduced, be it a derivative or natural, to a 
parent drug, it normally rises the solubility in water by 
multiplier magnitudes via an ammonium cation or an 
ionized carboxylate anion. 

In addition, numerous transporters required for 
absorbing oligopeptides and amino acids are 
expressed in the epithelial cells of the intestinal 
brush-border membranes and have been discovered 
to play a substantial role in absorbing various amino 
acid prodrugs[38]. For instance, the enhanced oral 
bioavailability of valganciclovir and valacyclovir, 
amino acid ester prodrugs of ganciclovir and acyclovir, 
respectively, are ascribed to their enhanced intestinal 
transport through the H+-coupled peptide transporter 1
(PEPT1)[39,40]. In recent times, prodrugs of amino 
acid have ensured controlled drug release in the kind 
of lisdexamfetamine dimesylate, which is a L-lysine 
amino acid amide prodrug of D-amphetamine[41].

Benefi ts of amino acids as promoieties[38,42] include, 
large structural diversity; they are normal dietary 
constituents and are nontoxic in moderate doses as 
compared to other promoieties; a broad range of 
functional groups like hydroxyl, amine, or carboxylic 
acid group, which can be attached to parent drug; well-
established prodrug chemistry; commercial availability; 
fewer safety concerns; substrates for various different 
intestinal infl ux transporters; they have gastroprotective 
action; the availability of amino acid prodrugs those are 

commercially successful; utilized for the improvement 
of pharmaceutical attributes of diffi cult compounds or 
marketed drugs.

All α-amino acids contain a chiral α-carbon with the 
exception of glycine, and are available in two optical 
isomers, D- and L-form. The L-form exists naturally. 
As such, the prodrugs prepared by using these amino 
acids are normally activated by enzymes that occur 
naturally. The L- and D-amino acid prodrugs have 
similar physicochemical attributes; however, the latter 
is stable against hydrolysis due to enzymes that occur 
naturally. This amino acid characteristic is frequently 
used by medicinal chemists to create stable prodrugs 
of amino acid. Furthermore, the large arrays of di-/tri-
peptides and synthetic amino acids like D-amino acids, 
homo amino acids, beta-homo amino acids, N-methyl 
amino acids, α-methyl amino acids are commercially 
available as promoieties for medicinal chemists in 
addition to natural amino acids[43]. 

When amino acids are promoieties, they offer the largest 
expanse and structural diversity of physicochemical 
properties. By selection of the proper amino acid, 
polarity, solubility profi le and acid base properties of 
a given drug molecule can be altered. Few examples 
of produgs that are reported using amino acids as 
promoieties and the advantage achieved thereof are 
given in Table 1[44-49].

Polysaccharides as prodrug carriers:

Polysaccharides are used as promoieties specifi cally 
for colon targeting drug delivery. Various 
polysaccharides, such as cyclodextrin, dextran, pectin, 
chitosan and chondroitin are conjugated with drugs. 
Chondroitin sulphate, a copolymer of D-glucuronic 
acid and sulphated N acetyl D-galactosamine, is an 
important structural component in connective tissue 
and cartilage. It can be used as a good candidate for 
colon-targeted drug carriers. CDs belong to the family 
of oligosaccharides. They are obtained by enzymatic 
degradation of starch. CDs are nontoxic and thought 
to be one of the most suitable promoieties to reduce 
ulcerogenic tendency of drugs. 

Dextran has excellent physicochemical properties, 
physiological response and unique pharmacokinetic 
profi le. It contains large number of carbohydrate 
hydroxyl groups available, which can be linked to drug. 
Even though this limits the number of drugs that might 
be directly liganded to the matrix using application of 
spacer arm technique, which links drugs possessing 
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diverse functional groups to dextran[50]. Literature 
revealed that in most polymeric prodrugs, the drug is 
connected to polymeric carrier by a chemical linkage. 
Dextran was investigated as a macromolecular carrier 
for delivering drugs and also demonstrated that it is 
useful to target therapeutic agents to the liver. The 
examples of polysaccharides as prodrug carriers with 
their advantages are given in Table 2[51-55].

Phytophenols as prodrug carriers:

Traditionally phytophenols are used for their medicinal 
as well as fl avouring properties, with well-documented 
safety profi les. Phytophenols can be linked to drugs 
containing carboxylic group via an ester bond. 
These are used as prodrug carriers to combine 
antiinfl ammatory and antioxidant properties. Naturally 
occurring phenolic antioxidants are thymol, guaiacol 
and eugenol whereas menthol is alcoholic compound. 
Menthol, thymol, eugenol, guaiacol, vanillin, 
umbelliferone (Table 3)[56-58] are the promoieties used 
in prodrug synthesis. They show antioxidant as well as 
gastroprotective properties.

Alcohols as prodrug carriers:

Esters dominate research due to their ideal 
characteristics that exhibit suffi cient chemical stability 
in vitro and their ability to function as esterase substrates 
for in vivo regeneration[59]. Alcohols form ester bonds 
with carboxylic groups of drug moiety. N-propyl, 
iso-butyl, iso-propyl, t-butyl, benzyl, cyclopentyl and 
cyclohexyl alcohols (Table 4)[60,61] are alcohols used as 
promoieties in synthesis of ester prodrugs. Iodomethyl 
pivalate and 2-bromo ethyl acetate are also used.

Amines as prodrug carriers:

For the synthesis of amide prodrugs various amines like 
propylamine, diethylamine, cyclohexyl amine, 2-amino 
ethyl amine, 2-hydroxyl ethyl amine, ethylenediamine, 

benzathine and cysteamine (Table 5)[62-64]

are used as carriers. These form amide bonds with 
carboxylic groups of drug moiety.

Polymers as prodrug carriers:

Within the last 20 y, scientists concentrated on creating 
drug delivery systems that were site specifi c and 
various polymers showed promising outcomes. A drug 
and polymer conjugation forms the polymeric prodrug. 
In 1975, Ringsdorf for the fi rst time formulated 
a rational model (fi g. 4) of a polymeric prodrug. 
Ringsdorf was fi rst to recognize that if biologists and 
polymer chemists work together polymeric prodrugs 
with immense potential can be evolved[65]. The 
suggested model is made up of majorly fi ve elements, 
the drug, the targeting group, the polymeric backbone, 
the solubilizing agent, and the spacer. The carrier is 
either biodegradable or an inert polymer. The spacer 
controls the site and the rate of active drug release from 
the conjugate[66]. The drug and the polymer must be 
covalently bonded together. The drug must stay linked 
to the polymer until the macromolecule reaches to the 
desired action site. 

Three criteria are used as basis to select the drug to 
be used in this system, fi rst, due to restriction on the 
quantity of drug that can be administered, only a potent 
drug should be used. Second, the drug should possess 
proper functional group so as to bind successfully to 
polymer backbone directly or through spacer molecule. 
Third, the drug has to be suffi ciently stable. Until drug 
gets released at the desired site it must not be excreted 
in the conjugate form[67]. Polymer like polyethylene 
glycol (PEG) can be attached to the hydroxyl or amine 
group of the drug via spacers and linked to the spacer 
via an ester, amide, carbonate, or carbamate bond that 
undergoes either chemical or enzymatic cleavage in the 
bioconversion process.

Amino acids used as carriers Conjugation with drug Advantage Reference

Valine Saquinavir, indinavir Improved pharmacological and 
pharmacokinetic profi le 44

L-Valine Acyclovir, zidovudine Enhanced cellular uptake 45
L-alanine and histidine Aceclofenac Reduced gastrointestinal side effects 46
Glycine, phenylalanine, tryptophan, 
L-isoleucine, L-alanine, L-valine, L-aspartic 
acid L-glutamic acid

Ketorolac Controlled release and reduced 
gastrointestinal side effects 42

L-tryptophan, histidine, DL-alanine Flurbiprofen Reduced gastrointestinal side effects 47
Phenylalanine, valine and proline
Glycine, alanine, lysine, Floxuridine Good solution stability and fast 

enzymatic conversion rates 48

leucine, phenylalanine Dapsone Improved water solubility 49

TABLE 1: AMINO ACID PRODRUGS 
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Classifi cation of polymers:

Below is a classifi cation of some important polymers 
used for bioconjugation based on their origin, synthetic 
polymers- PEG, divinylethermaleic anhydride/acid 
copolymer, polyethylenimine or polyaziridine and vinyl 
polymers- a) N-(2-hydroxypropyl) methacrylamide 
b) poly(styrene-co-maleic acid/anhydride). Natural 
polymers- dextran, chitosan, proteins. Pseudosynthetic 

polymers- synthetic poly(α-amino acids) like poly(L-
glutamic acid), poly(L-lysine), poly(N-hydroxyalkyl)
glutamines) and polyglycolic or polyglycolide acid. 
Proper drug and polymer candidate must be selected 
while designing the polymeric conjugates. Table 6 
shows few examples of polymeric prodrugs available 
in the market. 

Requirements for choosing polymers as drug 
carriers:

The availability of suitable functional groups such as 
-OH, -COOH, -NH2, or -SH to covalently bind with 
drugs, biocompatible, non-immunogenic and nontoxic, 
biodegradable, molecular weight low enough to limit 
renal excretion, availability, reproducible manufacture, 
ease of administration to patients, hydrophilic to 
ensure aqueous solubility, low polydispersity and fi nal 
conjugates should have a satisfactory homogeneity[68].
Prodrugs are increasingly becoming an integral 

Polysaccharides used as carriers Conjugation with drug Advantage Reference
Cyclodextrin Mefenamic acid Reduced ulcerogenic potential 51

Dextran Flurbiprofen and suprofen Improved analgesic and antipyretic effect 
with low ulcerogenic potential 52

Chitosan glucosamine Metronidazole Colon-targeted drug delivery 53
Dextran Valproic acid Reduced hepatotoxicity and ulcerogenicity 54
Dextran Acyclovir Targeting of drug to liver 55

TABLE 2: POLYSACCHARIDE PRODRUGS 

Phytophenols used as carriers Conjugation with drug Advantage Reference
Guaiacol, eugenol, thymol,
Vanillin, umbelliferone, menthol. Diclofenac Reduced ulcerogenic potential 56

Menthol, thymol, eugenol Ibuprofen Synergistic analgesic action and 
reduced gastrointestinal toxicity 57

Guaiacol Mefenamic acid Synergistic antiinfl ammatory activity 
and less toxicity 58

TABLE 3: PHYTOPHENOLIC PRODRUGS

Alcohols used as carriers Conjugation with drug Advantage Reference
Cyclopentyl alcohol, cyclohexanol, iso-butyl alcohol, 
t-butyl alcohol Flurbiprofen Decreased gastrointestinal side 

effects 60

Iodomethyl pivalate and 2- bromo ethyl acetate Indomethacin Reduced gastrointestinal side 
effects 61

TABLE 4: ESTER PRODRUGS 

Amines used as carriers Conjugation with drug Advantage Reference

Ethylenediamine and benzathine conjugate Ibuprofen Reduced gastrointestinal side effects 
and improved analgesic activity 62

Propylamine, diethylamine, cyclohexyl amine, 
2–amino ethyl amine, 2–hydroxyl ethyl amine Ketoprofen Reduced gastrointestinal side effects 

and improved analgesic activity 63

Cysteamine Ibuprofen and
Indomethacin

Antioxidant activity and lower 
ulcerogenic potential 64

Heterocyclic amide Ibuprofen Improved analgesic activity, lower 
ulcerogenic potential 64

TABLE 5: AMIDE PRODRUGS 

Fig. 4: Ringsdorf’s model of polymeric prodrug
Five elements of Ringsdorf’s model: the drug ( ), the targeting 
moiety ( ), the polymeric backbone ( ), the solubilizing 
agent ( ) and the cleavable spacer ( )
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component of the drug discovery stratagem. The rising 
percentage of approved new drug entities which are in 
fact, prodrugs, is a clear indication of their importance. 
Proper selection of a carrier is the most important 
part of prodrug design and synthesis. Selection of 
promoeity in prodrug research should be done wisely 
as it will determine the regeneration of active drug 
in vivo and also the promoeity itself should be nontoxic 
and excreted soon. The authors hope that the current 
review provides enough impetus to research different 
carriers for synthesis of prodrugs to succeed in delivery 
despite the challenges currently posed by complex 
molecules that are under development.
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