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Caspase-3 Inhibition Prediction of Pyrrolo[3,4-c]
Quinoline-1,3-Diones Derivatives using Computational 
Tools
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Pandey et al.: In silico study of caspase-3 inhibition

In the present work, two dimensional quantitative structure activity relationship, molecular docking and 
absorption, distribution, metabolism, excretion and toxicity analyses were performed to pyrrolo[3,4-c]
quinoline-1,3-diones derivatives, previously reported as caspase-3 inhibitors. A total of one hundred 
fifteen compounds were used to build linear multiple linear regression (multiple linear regression) and 
non-linear (artificial neural networks) quantitative structure activity relationship models, using genetic 
algorithm as a feature selection method. Both models were thoroughly validated following Organization 
for economic cooperation and development principles by internal and external validation as well as 
the domain of application (antiphase domain). Both Genetic algorithm-multiple linear regression  
(Rtrain=0.88, Rtest=0.94, mapetest=5.3 and rmsetest=0.41) and Genetic algorithm-artificial neural network 
(Rtrain=0.9, Rtest=0.93, mapetest=4.5 and rmsetest=0.4) models are statistically robust with high external 
predictive ability. Molecular docking simulations were performed on selected inhibitors revealed that 
binding energy values are in accordance with inhibitory activity values against caspase-3, which is 
modulated by hydrogen bondings, Pi stacking and hydrophobic interactions. The docking studies suggest 
that the inhibitors bind with an allosteric site of the enzyme formed by ARG207B, SER251B, PHE250 
and PHE256 of the B chain. Besides, in silico, absorption, distribution, metabolism, excretion and toxicity 
profiles of selected inhibitors were checked to evaluate the key pharmacokinetic, physiochemical and 
druglikeness features.
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Programmed cell death also known as apoptosis is 
a normal physiological process, essential for the 
development and health of organisms. A family 
of cysteine proteases known as caspase (cysteine-
dependent aspartate protease) plays important role in 
inducing apoptosis[1]. Caspases are strict endonuclease[2]. 
Dysregulation of apoptosis is believed to play a role in 
various chronic diseases including neurodegenerative 
disorders, autoimmune disorders, stroke and 
myocardial infarction and several forms of cancers[3]. 
Therefore the development of a drug that can regulate 
the process of apoptosis has been a challenging task for 
researchers and pharmaceutical companies to treat some 
pathological conditions caused by abnormal apoptosis. 
Among 14 members of the caspase family, caspase-3 
(apopain) is a key executioner enzyme involved in 
apoptosis. It is responsible for the physiological and 
morphological changes that occur in apoptosis and 

is expressed in almost all tissues at a relatively high 
level[4]. Therefore, it is considered an interesting 
therapeutic target for the treatment of diseases caused 
by undesirable apoptosis. Numerous peptide and non-
peptide inhibitors have been reported in the literature[5]. 
In this context, different classes of the reversible and 
irreversible non-peptide small molecule inhibitors 
have been described including dithiocarbamate, 
N-nitrosoanilines, isatin sulfonamide derivatives, 
anilinoquinazolines, 2-(2,4-dichlorophenoxy)-N-
(2-mercaptoethyl)-acetamide, 5-fluoro-1H-indole-
2-carboxylic acid (2-mercaptoethyl)-amide 1 and 
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pyrrolo[3,4-c]quinolines-1,3-diones[6-10]. Among them, 
pyrrolo[3,4-c]quinoline-1,3-diones derivatives (fig. 1)  
are considered as one of the less explored heterocyclic 
structures with promising caspase-3 inhibition activities 
to prevent abnormal apoptosis.

In silico methods are becoming imperative tools in 
pharmaceutical biology especially in drug designing and 
drug refinement. In chemometric research, quantitative 
structure activity relationships (QSAR) studies in 
combination with molecular docking and Absorption, 
distribution, metabolism, excretion and toxicity 
(ADMET) analysis offers the advantage of being 
more simple, environment friendly and cost-effective 
than experimental approaches in novel drug design 
and sustainable pharmacy. Ligand-based (QSAR) and 
receptor-base (molecular docking) prediction methods 
are complementary to each other[11].  QSAR models 
are mathematical equations, constructing the linear or 
non-linear relationship between biological activity and 
chemical structure presented in the form of theoretical 
descriptors[12]. There are several approaches in QSAR 
modeling. Linear modeling approaches include 
multiple linear regression (MLR), partial least square 
(PLS), etc. are developed to extract the maximum 
information from complex data matrices based on 
their linear behavior. In contrast, artificial neural 
networks (ANNs) have been used for exploring non-
linear modeling and optimization when underlying 
mechanisms are very complex[13]. Molecular docking, as 
an optimization problem, has played an important role 
in the understanding of drug/receptor interactions[14]. 
In this in silico approach, compounds are usually 
ranked through scoring functions, mainly categorized 
into force field-based, empirical or knowledge-based 
methods. Studies have demonstrated the applicability 
of molecular docking methods to in silico campaigns, 
including those targeting caspase-3[15,16]. Virtual ADMT/
tox profiling is also an important aspect of the drug 
design process prior to in vivo studies which explain 
the pharmacokinetics aspects of a drug molecule[17]. 

Considering all these realities, two dimensional 
QSAR (2D QSAR), molecular docking and ADMET 
estimations have been performed on a progression of 
substituted, pyrrolo[3,4-c]quinolines-1,3-diones as 
inhibitors of caspase-3 in the present investigation.  
The primary goal of the study was to utilize different 
computational techniques for the assessment of the key 
structural features required of pyrrolo[3,4-c]quinolines-
1,3-diones derivatives (fig. 1) as effective caspase-3 
inhibitors. Sharma et al. have performed a molecular 
modeling study on the small dataset (25 compounds) of 
pyrrolo[3,4-c]quinolines derivatives[18]. Here, a dataset 
containing 115 inhibitors was selected to develop 
robust, reliable linear and non-linear QSAR models 
following Organization for Economic Co-operation and 
Development (OCED) standards. Besides, molecular 
docking studies and ADME/tox profiles of the inhibitors 
were explored to provide further insights for the design 
and development of inhibitors of caspase-3.

MATERIALS AND METHODS

Dataset and software:

For the present molecular modeling study, a set of one 
hundred fifteen pyrrolo[3,4-c]quinolines-1,3-diones 
derivatives with a wide activity range was retrieved from 
the literature[10,19-21]. This data set represents inhibition 
in terms of Half-maximal inhibitory concentration 
(IC50) values for each molecule. The biological activity 
data were then converted to pIC50 values and were used 
as the dependent variable. The structures of all the 
compounds along with their actual biological activities 
are presented in supplementary Table 1. All calculations 
presented in this work were carried out on a personal 
computer with Windows 7 operating system. Online 
facilities eDragon and genetic algorithm 1.4 tool were 
used for descriptor generation and best subset selection 
respectively[22,23]. ANN calculations were performed 
with Matlab software. Avogadro, iGEMDOCK, Pyrx 
softwares were used for optimization and docking 
study respectively[24-26].

Calculation and selection of molecular descriptors:

The three dimensional (3D) structures of 115 
compounds were drawn and the starting geometries 
of the molecular structures were optimized using 
the built-in Avogadro minimization algorithm based 
on the Merck Molecular Force Field 94 (MMFF94) 
force field using the Steepest Descent Algorithm with 
500 steps of minimization. Standard database format 
(SDF) files of all these compounds were generated and Fig. 1: The template of pyrrolo[3,4-c]quinolines analogs
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Comp. pIC50
a MLRb ANNc NMD Comp. pIC50

 a MLRb ANNc NMD

1 4.2 4.0134 4.1182 0.229 61 7.4 7.6609 7.303 0.263
2* 4.43 4.8120 4.7168 0.230 62 7.8 7.8696 7.1906 0.127
3 6.68 6.9373 6.363 0.007 63 7.45 7.6556 7.6879 0.005
4 5.2 4.8474 4.827 0.239 64 7.77 7.4492 7.4739 0.005
5 5.8 5.5465 5.4182 0.233 65 7.88 7.5597 7.7131 0.018
6 7.36 7.2911 7.2309 0.002 66 7.85 7.4477 7.5175 0.006
7* 5.33 5.8753 5.4531 0.192 67 8.1 8.0307 8.3658 0.004
8 5.6 6.2940 5.632 0.182 68 8.04 8.1147 8.1335 0.008
9 6.34 6.2673 6.4584 0.186 69 8.22 7.7640 7.8691 0.000
10 7.8 7.7081 7.2486 0.017 70 8.22 8.5105 8.4566 0.057
11 4.63 5.7111 5.3788 0.205 71 8.3 8.6394 8.446 0.060
12 5.26 5.5865 5.1161 0.197 72 8.3 8.3760 8.3713 0.066
13 5.96 5.3788 5.9492 0.206 73 8.52 8.6421 8.5043 0.057
14 7.43 7.0041 7.6167 0.024 74* 8.39 8.7554 8.516 0.056
15 5.1 5.5301 5.2876 0.228 75 7.92 7.8977 8.0749 0.004
16 5.59 5.6832 5.4911 0.228 76 7.74 7.7181 7.7953 0.007

 17* 7.82 7.5274 7.5425 0.006 77 7.85 7.5593 7.6245 0.003
18 6.44 6.9703 5.7962 0.245 78* 7.88 7.8123 7.8977 0.010
19 7.04 7.3211 6.9813 0.085 79 8.52 8.0960 8.2285 0.014
20 7.8 7.2273 7.862 0.228 80* 7.08 7.7928 7.9492 0.005
21 7.48 7.3032 7.3404 0.059 81 7.82 7.5101 7.9431 0.036
22 7.7 8.0910 7.8191 0.068 82 6.4 6.8127 6.2939 0.045
23 7.68 7.7481 7.6241 0.072 83 7.74 7.8080 7.825 0.011
24* 7.64 7.5245 7.2602 0.140 84 5.52 7.0327 6.6622 0.011
25* 7.26 7.6405 6.6378 0.226 85* 7.4 7.0101 6.7968 0.015
26* 8.4 9.0319 8.6123 0.060 86 7.57 7.3480 7.5389 0.006
 27* 7.27 7.3562 7.4054 0.002 87 7.44 7.0023 6.9782 0.007
28 7.64 7.1876 7.2511 0.140 88* 7.48 7.7198 8.1925 0.091

 29* 7.39 7.9458 7.576 0.011 89* 4.96 5.4058 5.1024 0.070
30 5.26 7.0742 6.5041 0.007 90 6.53 5.8390 5.2456 0.069
31 7.7 7.4732 7.1713 0.005 91 6.59 6.3183 6.5763 0.094
32 7.5 7.4211 7.5392 0.028 92 5.9 6.2269 5.8901 0.090
33 7.01 6.8764 6.7799 0.196 93 4.81 5.2477 4.8084 0.072
34* 7.25 6.9016 7.2179 0.195 94 5.28 5.2370 5.1895 0.160
35 7.24 6.4213 6.0653 0.196 95 4.55 6.4107 5.7141 0.067
36 7.26 6.9051 7.1518 0.197 96* 6.45 7.0406 6.9235 0.106
37 7.27 6.9819 7.5226 0.020 97 6.44 7.1000 6.5842 0.129
38 7.62 7.5450 7.767 0.198 98 7.23 7.4718 7.1927 0.015
39* 6.82 7.6084 7.629 0.465 99 7.48 6.7914 7.2347 0.008
40 6.71 7.4556 6.6959 0.602 100 7.48 7.5859 7.7289 0.011
41 7.79 7.2196 7.0143 0.006 101 4.16 4.2338 4.2707 1.000
42 7.52 7.3268 7.3313 0.012 102 4.39 4.5204 4.2391 0.860
43 7.67 7.0167 7.5067 0.023 103* 5.67 6.0758 5.8514 0.094
44 7.07 6.9526 7.4821 0.034 104 6.06 7.0006 6.2552 0.126
45 7.96 6.9398 7.5212 0.021 105 6.27 6.4734 6.6021 0.197
46 7.96 7.0104 7.4315 0.096 106 6.42 6.6659 7.0486 0.097
47 6.18 6.3656 6.1521 0.096 107 6.49 6.2621 6.6143 0.092
48 7.13 6.9072 7.1333 0.090 108 6.51 6.6374 6.8851 0.093
49* 7.43 7.3299 7.8379 0.027 109 6.86 5.9949 6.3898 0.090
50 7.72 7.3137 7.1861 0.005 110 6.51 6.2502 6.2676 0.010
51* 7.82 7.9757 8.0591 0.008 111* 6.51 6.6062 6.6333 0.006
52 7.62 8.0930 7.8641 0.121 112 6.57 6.5181 6.4397 0.024
53 5.64 7.0673 6.7915 0.006 113 6.59 6.8742 6.7374 0.005
54 7.62 7.1885 7.0165 0.006 114* 6.61 6.3143 6.4481 0.022
55 8.1 7.7631 7.8323 0.008 115 6.66 6.5078 6.5764 0.004

TABLE 1: OBSERVED AND CALCULATED DATA OF CASPASE-3 INHIBITION ACTIVITY OF PYRROLO[3,4-c]
QUINOLINES 
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uploaded to Dragon software for descriptor generation. 
A large pool of descriptors was generated for each 
molecule including molecular properties, constitutional 
descriptors, topological descriptors, connectivity 
indices, information indices, topological charge indices, 
geometrical descriptors, weighted holistic invariant 
molecular (WHIM), 3D-Morse, Getaway and Resource 
description framework (RDF) descriptors. For the 
development of a robust QSAR model, a key step is the 
selection of the optimal subset of variables. Objective 
and subjective feature selection methods were applied 
to get the appropriate subset for linear and non-linear 
QSAR mapping. Genetic algorithm (GA) applied 
for subjective feature selection after preprocessing 
of the data set. It was used to search feature space 
and to select descriptors relevant to the inhibitory 
values. The important parameters that contributed to 
the GA performance are listed as follows: crossover 
probability=1, mutation probability=0.5, the initial 
number of equation generated=100, total number of 
iteration=100. 

Selection of training and test set: 

The optimal division of the data set is an important 
and critical step in QSAR modeling. For meaningful 
prediction, the entire dataset was divided into two 
subsets: training and test set. The division was done by 
the Euclidean distance-based method so that both sets 
cover the entire chemical space of the whole dataset. 
Finally, 92 and 23 compounds from the whole dataset 
were used as the training set and test set, respectively. 

Linear and non-linear modeling:

Linear and non-linear mapping of the refined data 
set was carried out by MLR and ANN method 
respectively. The advantage of MLR is its simple form 
and easily interpretable mathematical expression. For 
improvement of the performance of the generated model 
and to explore the non-linear relationship between 
selected independent variables and inhibitory activity, 
a fully connected feed-forward artificial neural network 
was implemented. Mainly two major components are 
essential to the effectiveness of a neural network at 
solving a particular problem: its architecture and the 

algorithm by which it is trained. A three-layered feed-
forward ANN trained with the Levenberg-Marquardt 
algorithm was used for non-linear mapping.

Model validation: 

Model validation is an important feature in QSAR 
modeling to confirm the reliability, robustness, and 
quality of the developed QSAR model. This is done to 
test the internal stability and predictive ability of the 
selected models. The developed QSAR models in this 
study were validated by internal as well as external 
validation. The methods of least-squares fit (R2), leave 
one out cross-validation (Q2

LOO), adjusted R2 (R2adj), 
root-mean-squared error (RMSE) and scrambling 
(Y-randomization) were used for internal validation of 
the models. For estimating external predictability of 
proposed models, R2

(test), mean absolute percent error 
(mapetest), root mean squared error (rmsetest)  as well as 
parameters recommended by Golbraikh and Tropsha 
were estimated[27]. Defining the Applicability Domain 
(AD) is an important aspect according to OECD. In 
the present study, AD was verified by calculating 
normalized mean Euclidean distance value for each 
compound as well as using the Leverage approach[28]. 
Williams’s plots were generated for the detection of 
response outlier and structurally influential chemicals 
in each developed model.

Molecular docking: 

The crystal structure of caspase-3 (PDB entry: 1gfw) in 
complex with the ligand (MSI) were downloaded from 
the RCSB Protein Data Bank[29]. The selected protein 
has an X-ray resolution factor of 2.8 Å.  Structure 
based virtual screening and post-screening analysis was 
carried by using iGEMDOCK tool. Standard docking 
protocol was followed by setting a population size of 
200 with 70 generations and 2 solutions. The docking 
procedure was validated by removing crystallographic 
bound ligand (MSI) from the binding sites of 1GFW 
and redocking it. Then, the selected energy minimized 
inhibitors were docked into the receptor. Protein 
compound interaction profiles were generated and 
analyzed by post-analysis tools. To verify the results 
obtained by iGEMDOCK, again molecular docking 

56 7.65 7.4151 7.5447 0.005
57 7.69 7.2280 7.4175 0.010
58 8 7.9794 8.1278 0.005
59* 8.04 7.9503 8.0953 0.005
60 7.65 7.1595 6.9641 0.003

*=test set compounds; a=experimental value; b=values predicted by GA-MLR; c=Values predicted by GA-ANN; NMD= Normalized mean 
distance



www.ijpsonline.com

Indian Journal of Pharmaceutical Sciences 508May-June 2021

was performed by PyRx. For docking simulations, a 
grid box covering all the binding sites present in the 
1GFW was constructed.

ADME/Tox properties:

Physicochemical properties, pharmacokinetics, 
druglikeness and medicinal chemistry of the selected 
inhibitors were also computed. The simplified 
molecular-input line-entry system (SMILES) of the 
set of compounds with the lowest binding energy were 
submitted to Swiss ADME online server for the study of 
their pharmaco kinetics and drug-likeness properties[30]. 

Selected ligands were also analyzed for bioavailability 
property using Boiled egg analysis[31].

RESULTS AND DISCUSSION

The dataset with 1666 descriptors for each molecule was 
generated online using eDragon descriptor calculation 
facility. The descriptor pool was screened first to 
decrease the redundancy existing in the descriptor 
data matrix. The objective feature selection procedure 
was performed in two steps. At first, descriptors with 
constant and near-constant values for all molecules 
were removed (1324 descriptors). Then highly inter-
correlated descriptors were removed using Volume-
Weighted Average Price (VWAP) algorithm proposed 
by Ballabio et al. with variance and correlation 
coefficient cut-off values 0.01 and 0.7, respectively[32]. 
Applying these two steps, the number of descriptors 
was considerably reduced from 1666 to 422. The 
entire dataset was then utilized for the subjective 
feature selection procedure. Genetic algorithm was 
implemented for selecting relevant descriptors. In 
the present case, a string composed of 422 genes 
representing the presence and absence of a descriptor 
is coded by 1 or 0 respectively. The chromosomes with 
less number of selected descriptors, a high value of 
fitness function and a low value of Lack of fit (LOF) 
were marked as informative chromosomes. Finally, 
nine descriptors demonstrating high accordance with 
inhibitory activity were selected for linear and nonlinear 
regression. A correlation matrix was obtained among all 
nine descriptors selected finally because the regression 
equation is useless if descriptors are highly correlated. It 
can be seen from the correlation matrix (supplementary 

Table 2), there is no significant correlation among the 
selected descriptors. The splitting of the dataset into 
training and test sets was performed rationally using 
Euclidean distance based technique. As a result, 80 % 
of the data set (92 compounds) was used as the training 
set and the remaining 20 % (23 compounds) was used 
as the test set. The best multivariate linear model 
representing the linear relationship between selected 
nine descriptors for pyrrolo[3,4-c]quinoline-1,3-diones 
derivatives and corresponding inhibitory activity is 
shown in the following eqn: pIC50=2.41547(±1.49026)-
2.34372(±0.52346) MATS8v-1.35568(±0.44891) 
GATS6e-1.13556(±0.22567) Lop+0.11274(±0.10776) 
MAXDN+0.96173 (±0.38519) EEig02 d-2.45236 
(±0.41102) Mor28u+0.66974(±0.15395) -028+1.59022 
(±0.49535) Mor28m-0.26551(±0.04402) nCs (1), Here 
N=92, R2: 0.75327, R2

Adj: 0.7261, Q2
(Loo) :0.69003, 

MAPE(train)=6.45.

The QSAR model presented by equation (1) was 
internally cross-validated by leave one out (LOO) 
method. The value of Q2

(Loo)  (0.69, >0.5) for the training 
set can serve as an indicator of a high predictive ability 
of the proposed model. Y randomization technique was 
also performed by randomly shuffling the dependent 
variable while keeping the independent variable as it is. 
Low values of average R2 (0.10) and average Q2 (-0.14) 
resulted after the generation of fifty random models, 
which confirmed that the developed QSAR model is 
reliable. From all the statistical parameters, it can be 
seen that the proposed linear model is stable, robust and 
predictive, consequently was used for the prediction 
of activities of the test set data. The prediction results 
obtained from the GA-MLR approach for the entire 
dataset are given in Table 1.

The contribution of the selected descriptors present in the 
equation can be interpreted as fol1ows: The descriptors 
Moran autocorrelation of lag 8 weighted by vander 
Waals volume (MATs8v) and Geary autocorrelation 
of lag 6 weighted by Sanderson electronegativity 
(GATS6e) belong to 2D autocorrelations. Their Negative 
Contribution towards inhibitory activity indicates 
an inverse relationship with vander Waals volume 
and Sanderson electronegativity, respectively. The 
negative relationship is consistent with the observation 
that inhibitors with bulky, non-polar and lipophilic 

 Internal validation External validation
 R(train) rmse mape R rmse mape r0

2 r'0
2 k k' R0

2 R'0
2 r0

2-r'0
2

GA-MLR 0.88 0.507 6.45 0.94 0.41 5.3 0.88 0.86 0.97 1.026 0.96 0.97 0.02

GA-ANN 0.9 0.47 4.45 0.93 0.4 4.5 0.87 0.87 0.98 1.01 0.98 0.99 0.002

TABLE 2: COMPARISION OF VALIDATION PARAMETERS OF GA-MLR AND GA-ANN MODELS
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substituents at position 2 are less active. It may be due 
to the unavailability of the inhibitor to accommodate 
in the sterically hindered binding site of caspase-3. 
The descriptor Lop (or Loc, lopping centric index,) 
corresponds to topological indices. This radial centric 
information indices display negative contribution in 
the eq1. The descriptor that affects the activity with a 
low positive coefficient is maximal electrotopological 
negative variation (MAXDN). It is related to the 
nucleophilicity of the inhibitor. It may influence the 
electrostatic interactions between the inhibitor and 
the receptor site. Eigenvalue 02 from Edge adjacency 
matrix weighted by dipole moment (EEig02d), Edge 
adjacency indices displays a positive coefficient in 
the eq.1, indicating the pIC50 value directly relates 
to this descriptor. Mor28u (signal 28/unweighted) 
and Mor28m (signal 28/weighted by mass) are two 
3D-MoRSE descriptors present in equation (1). Mor28u 
has the highest contribution towards pIC50 value. In 
the present case, inhibitors with a high Mor28u value 
show poor inhibitory activity. C-028 descriptor belongs 
to Atom-centered fragments. It provides information 
about the number of predefined structural features in 
the molecule which is in the present case is R--CR-
-X. i,e central carbon atom (C) that has two carbon 
neighbors (R2) and one heteroatom neighbors (X). The 
positive sign indicating that pIC50 is directly correlated 
to this descriptor. The last descriptor in the eq. 1 is 
nCs (number of total secondary C (sp3), functional 
group counts), which also negatively correlated to 
the inhibitory activity. It is worth mentioning that the 
binding interactions of the inhibitor to the target site 
depend upon the shape, size, polarizability, etc. The 
descriptors selected by GA account for these features. 

All nine selected descriptors from the genetic algorithm 
method were used as input for three-layer back-
propagation ANN models to explore the non-linear 
relationship between descriptors and reported pIC50 
values.  The number of nodes in the input layer was 

nine, as the input vectors were set of nine descriptors 
selected by the GA. In order to optimize the number of 
nodes in the hidden layer, the concept of ρ as proposed 
by Andrea and Kalayeh was used[33]. The output layer 
was the pIC50 value. A feed-forward neural network 
trained with Levenberg-Marquardt (L-M) algorithm 
was used for non-linear mapping. L-M algorithm allows 
the network to learn more crafty features of complex 
mapping. The transfer function in the first layer was 
tan-sigmoid and the output layer transfer function 
was linear. MSE value for the test set was calculated 
by changing the number of nodes in the hidden layer. 
Several training sessions were conducted with the 
different number of hidden nodes ranging from 4 to 11. 
Finally, a network of 9-5-1 was selected and calculated 
pIC50 values for the training and test set are present in 
Table 1. Statistical parameters for the training set are as 
follows: R2=0.9, RMSE=0.47, MAPE(train)=4.45. 

The prediction performances of the GA-MLR and 
GA-ANN models were evaluated using some common 
external validation parameters such as R2

pred, RMSE(Pred), 
MAPE(pred). The Golbraikh-Tropsha criteria have also 
been applied to test sets, to provide confidence in the 
validation methodology (Table 2). The calculated 
values of the above mentioned parameters are in good 
agreement with the proposed criteria. The statistical 
quality of both the QSAR models is comparable 
showing significant validation results. The acceptable 
R(pred) values of (0.94, 0.93) indicate a good prediction 
capability of the models. It is clear from Table 2, that 
both GA-MLR and GA-ANN models are comparable, 
however, the GA-ANN model is superior due to the low 
MAPE value for the prediction.

Furthermore, the proximity between the observed 
and predicted pIC50 values for both linear and non-
linear models of pyrrolo[3,4-c]quinolines1,3-dione 
derivatives is graphically represented through the 
scatter plot, shown in fig. 2.

                        
Fig. 2: Scatter plots of observed versus predicted values of the inhibitors using GA-MLR and   GA-ANN models
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AD represents the chemical space defined by the 
structural information extracted from the chemical 
used as training set compounds in the QSAR modeling. 
Both QSAR models were verified for the applicability 
of the domain to generate reliably predicted values 
of pIC50 for the inhibitors. The applicability domain 
of the model was analyzed by the Euclidean distance 
method as well as using Williams’s plots (fig. 3). The 
outcomes from applicability domain analysis for the 
GA-MLR model, by Euclidean distance method are 
quite satisfactory within the normal distribution range 
and normalized mean distance values are reported in  
Table 1. The Williams plot was used to visualize 
influential chemicals, i.e., chemicals with leverage 
greater than the critical hat value, h*( h*=3(P+1)/n 
(where P=number of model descriptors and n=number 
of chemicals in the training set), as well as outlier 
chemicals, i.e., chemicals with standardized residual 
greater than three standard deviations (SD) units (3σ). 
The Williams plots for GA-MLR and GA-ANN models 
(fig. 3) show the presence of four training samples 
(1,17, 30 and 81) having a great influence on the models 
(i.e., greater than the warning leverage h*). From the 
Williams plot for the GA-MLR method, it is observed 
that, though the compounds 22, 41, 68 and 76 lie within 
the AD of the model, they are outside the 3σ limit. For 
the GA-ANN method, it is evident that no outlier is 
found, since all the compounds for both the training 
and test set were within the applicability domain of the 
square area, indicating reliable predictive power of the 
proposed model. 

The inhibition activity of the molecules in the 
dataset strongly relies upon substitution at the 2, 4 
and 8 positions on the core scaffold. Results suggest 
that activity strongly depends on the nature of the 

substituent at position 2.  The presence of 2-hetroaryl 
substituent increases the potency of the inhibitor. The 
significantly more potent compounds in the dataset 
have pyrazol-4-yl(26, 73,74), 1-phenyl-pyrazole-5-
yl(71,72) and 4-pyridyl(79) substituent at position-2. 
The polyfunctional and hydrophilic substituent at 
this position increases the activity may be due to the 
possibility of more non-covalent interaction with the 
binding pocket.

The activity of these ligands is enhanced by the 
presence of nucleophilic substituent at 4- position. It 
makes imide carbonyl more electrophilic in nature 
which is one of the main contributors to inhibition 
activity. Alkyl, aryl and heteroaryl groups (1-84, 86-88, 
99, 100) at this position enhance the activity, whereas, 
compounds with electronegative substituents (89-97) at 
the 4- position are less active. The electron-withdrawing 
capacity of 8-substituent also has a very significant 
and direct relationship with the activity of these 
inhibitors. The bulky group with electron-withdrawing 
capacity is favorable at position 8. Compounds with 
1,3,5-trimethyl-1H-pyrazol-4-yl at 2-position, methyl 
group at 4-position and morphonyl sulphonyl moiety at 
8-position are the lead compounds. 

Docking studies were employed to position the 
inhibitors into the capase-3 binding pocket to determine 
the optimum binding conformation and to elucidate the 
interaction with amino acid residues present within 
the pocket of the receptor. As reversible and non-
competitive nature of the pyrrolo[3,4-c]quinolines-1,3-
dione derivatives were reported. It was clear that the 
inhibitors would dock to the allosteric site other than 
the active site.  Docking software iGemdock was used 
to dock the selected inhibitors with the target enzyme. 
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Fig. 3: Williams plots for GA-MLR and GA-ANN models
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It is an integrated virtual screening (VS) environment 
for docking, screening, post-analysis and visualization 
of pharmacological interactions. It provides interactive 
interfaces to prepare both the binding site of the target 
enzyme and the screening compound library. In the 
present case, ten inhibitors having pIC50 value of more 
than 8.1 were considered as promising candidates for 
docking study. Each energy minimized compound 
from the library was docked into the binding site. 
Subsequently, iGemdock generated protein-compound 
interaction profiles for each compound. Table 3 
illustrates the result of the compounds based on the 
most favorable binding energy. 

Results obtained by iGEMDOCK were again validated 
by using AutoDock vina in PyRx. Both tools identified 
the same binding site in 1gfw. Outcomes obtained 
from PyRx supported the igemdock results with a 
very good binding efficiency between the receptor and 
ligands. The results are in reasonable correlation with 
the corresponding pIC50 values of the inhibitors. The 
docking scores of the ten molecules selected as top 
hits are presented in Table 3. The superimposition of 
the conformations of selected inhibitors at the binding 
pocket is presented in the supplementary file (fig. S1).

For target protein, total binding energy values 
(igemdock score) for all the compounds range from 
−103.48 to −127.87 kcal/mol as reported in Table 
3. Whereas, the Binding affinity of the top ten hits 
has binding values from -8.8 to -9.9 (pyrx score). 
Residues present in the Chain B of the target protein 
were involved in the interaction with the inhibitors. 
Docking interactions between the top two (73 aand79) 
hits based on the highest pIC50 values and calculated 
binding affinity are shown in fig. 4.  Hydrogen bond 
interactions were found between 73 and 1gfw binding 

pocket. Here, ARG207B, PHE250B and SER251B 
participated in H-bond interactions. Nitrogen atoms of 
the ARG207B are involved in two H-bond interactions, 
one with O atom of SO2 group and the other with O 
atom of morphonyl moiety. The oxygen atom of 
PHE250B forms H-bond interaction with N atom of 
the pyrazole-4-yl group. O atom of SER251B makes 
hydrogen bond interaction with O atom of one of the 
imide carbonyl groups. The presence of the other imide 
carbonyl may be considered redundant. Inhibitor 73 
also formed hydrophobic interactions with TRP206B 
and PHE256B of the target site. Besides, TYR204B 
and PHE256B were involved in pi stacking with the 
aromatic rings of the 73. Inhibitor 79 made H-bond 
interaction with ARG207B, ASN208B and SER209B of 
the target protein. Here, N atoms of ARG207B involves 
in interaction with O atoms the SO2 group. ASN208B 
forms H-bond interaction with one of the O atom of 
imide carbonyl. The oxygen atom of the SER209B 
forms an H-bond interaction with the nitrogen atom of 
quinoline moiety.  Hydrophobic interactions were also 
observed with PHE250B and TRP206B present at the 
binding pocket. 

In silico ADMET analysis is proved to be a good tool 
in drug discovery. The physicochemical properties of 
a drug have a compelling impact on the metabolic fate 
and pharmacokinetics. Some of the important ADME/
Tox parameters of the top ten molecules selected based 
on pIC50 value are shown in Table 3.  The molecular 
weight of selected inhibitors lies in the range of 438.46 
and 497.52 (except 71 and 72) and thus follows one of 
the criteria of the Lipinski rule of five. These inhibitors 
possess less than ten rotatable bonds; therefore, satisfy 
the criteria for oral bioavailability. One of the important 
parameters to understand the passive molecular transport 

 Pyrx 
score Igemdock score

Ligand pIC50 Energy VDW HBond Elec MW #Rotatable 
bonds

#H-bond 
acceptors

#H-bond 
donors TPSA WLOGP MLOGP ESOL 

Log S
26 8.4 -9.6 -108.93 -93.98 -14.94 0 469.51 3 8 0 123.08 2.03 1.13 -3.53

55 8.1 -8.9 -117.99 -97.72 -20.27 0 453.47 3 8 1 125.49 2.39 1.32 -3.79

67 8.1 -8.8 -120.93 -101.57 -19.36 0 485.47 5 10 1 160.24 1.19 0.14 -3.09

69 8.22 -8.8 -110.59 -93.25 -17.33 0 455.49 4 8 0 123.08 1.9 0.91 -3.28

70 8.22 -9 -103.48 -75.29 -28.19 0 455.49 3 8 0 123.08 1.73 0.91 -3.41

71 8.3 -9.9 -108.99 -80.91 -28.08 0 517.56 4 8 0 123.08 3.18 2.03 -4.84

72 8.3 -9.5 -120.52 -83.48 -33.01 -4.02 561.57 5 10 1 160.38 2.88 1.46 -4.72

73 8.52 -9.8 -105.32 -83.53 -21.79 0 455.49 3 8 1 133.94 2.02 0.91 -3.44

74 8.39 -9.7 -127.87 -97.42 -30.44 0 497.52 4 9 0 140.15 2.16 1.33 -3.54

79 8.52 -9.2 -106.08 -90.66 -15.41 0 438.46 3 8 0 118.15 2.08 0.84 -3.27

TABLE 3: DOCKING SCORE AND IMPORTANT ADME/T PARAMETERS OF SELECTED INHIBITORS 
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of a drug candidate is the Topological polar surface area 
(TPSA). It is clear from Table 3; molecules have TPSA 
value ranging from 118.15 to 160.38. Thus, inhibitors 
67 and 72 do not satisfy the criteria defined for good 
intestinal absorption (TPSA<140 Å2). The values of the 
water partition coefficient (W log P) are in the range 
of 1.19 to 3.18 (<5) predicting a low level of toxicity 
and non-specific binding. Also, all compounds had log 
S values between -3.09 and -3.79 (except 71and 72), 
indicating that all are soluble in water. Brain or Intestinal 
Estimate D permeation method (BOILED-Egg) is an 
intuitive graphical method to accurately predict the 
passive human gastrointestinal absorption (HIA) and 

brain permeability (BBB). This classification model 
relies on the descriptors: WLOGP and TPSA values. 
From the Boiled egg analysis of the top 10 molecules 
(fig. 5), it has been observed that all 10 compounds are 
found to be the substrate of the P-glycoprotein (PGP+) 
indicated by the blue dots.

Eight compounds (except 67 and72) are present in 
the white yolk attributed to being passively absorbed 
by the gastrointestinal tract (GIT). It is worthwhile to 
mention that compound 74 has eleven N and O atoms 
(C23H23N5O6S) (Lipinski’s rule violation, no of N or 
O>10) also it is present at the boundary of the boiled 

                         

                                           (a)                                                           (b)  
Fig. 4: Binding interactions of inhibitor 73(a) and 79(b)  

 
Fig. 5: Boiled egg plot of the top 10 inhibitors
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egg plot. The remaining seven compounds were in the 
range to satisfy Lipinski’s rule of five to be recognized 
as drug like potential.

CONCLUSION

A combined computational approach was applied to 
give insight into the structural features and mechanism 
of inhibition for a series of pyrrolo[3,4-c]quinolines-
1,3-diones derivatives as caspase-3 inhibitors. Two 
hybrid regression methods namely, GA-MLR and GA-
ANN were investigated for building QSAR models for 
the prediction of inhibition activity. The fitting ability, 
reliability, stability and predictive potential of the 
developed models were evaluated by various validation 
parameters (internal and external) following OECDs 
principles. Results obtained from molecular docking 
simulations were in accordance with the inhibition data, 
in which selected inhibitors were shown to bind to the 
allosteric binding site of the enzyme. These inhibitors 
were also subjected to in silico assessment of ADME/
tox properties. Taken together, this study demonstrates 
that selected six (26, 55, 69, 70, 73 and 79) inhibitors 
are found to be suitable as potential candidate molecules 
as a caspase-3 inhibitor and can further be tested under 
the in vivo and in vitro condition for prediction of new 
drugs.  

Supplementary Information (SI):

Structural information of the 115 pyrrolo[3,4-c]
quinolines-1,3-diones derivatives (Table S1), 
the correlation matrix of the selected descriptors  
(Table S2), superimposed docked pose of selected 
compounds (fig .S1) are available as supplementary.   
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