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Research Paper

Aureolic acids are a group of polyketides, defined as 
linearly-fused and tricyclic aromatic polyketides. It 
has been revealed that the biosynthesis of compounds 
of aureolic acid family go through an intermediate of 
tetracycline and naphthacene[1]. Chromomycin A3 and 
mithramycin are type II polyketides belonging to the 
class of aureolic acids with antitumor activities. These 
polyketides have properties of inhibiting growth 
and multiplication of many tumor cell lines[2]. 
Chromomycin A3 and mithramycin have been 
shown to have a stimulatory effect on K562 cell 
erythroid differentiation[3] and have also been found 
as neurological therapeutics[4] and in treatment of  
HIV-1[5].

Chromomycin A3 is the major constituent 
of a fermentation mixture synthesized by  
Streptomyces griseus while mithramycin is produced by 

different Streptomyces strains[2]. A same aglycon pattern 
is found in chromomycin A3 and mithramycin but the 
former differs in its glycosylation pattern. Mithramycin 
is the best studied example among aureolic acids[6]. It 
was first proposed that mithramycin was derived from 
a tetracenomycin-like scaffold, based on putative last-
ring cyclase heterologous expression from biosynthetic 
pathway of mithramycin in S. glaucescens Tu49[7]. A 
trisaccharide of d-olivose, d-oliose and d-mycarose, and 
a disaccharide of d-olivose have found in mithramycin 
while a trisaccharide of d-olivose (sugar C), d-olivose 
(sugar D), and 4-O-acetyl-l-chromose B (sugar E), 
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and a disaccharide of 4-O-acetyl-d-oliose (sugar A) 
and 4-O-methyl-d-oliose (sugar B) were attached at 
positions 2 and 6 of the aglycon, respectively were 
found in chromomycin A3

[8]. Although, chromomycin 
A3 and mithramycin both fall in aureolic acid class 
of polyketides yet they show more identity with 
other classes of polyketides for the sequences of their 
respective KSα genes involved in their biosynthesis. 
The current study was therefore, planned to point out 
the dissimilarities between genetic organizations of 
biosynthetic gene clusters of two aureolic acids i.e. 
chromomycin A3 and mithramycin. The gene sequence 
of KSα was used for preliminary classification of 
bacterial strains on the basis of their genetic abilities to 
produce different aromatic polyketides[9]. 3D models of 
KSα proteins of both aureolic acids were also predicted 
along with two other closely related polyketides i.e. 
chlortetracycline and polyketomycin.

MATERIALS AND METHODS

Sequence retrieval for genetic organizations:

Chromomycin A3 and mithramycin were the only 
members of aureolic acid class of polyketides found 
in DoBISCUIT (Database Of BIoSynthesis clusters 
CUrated and InTegrated)[10]. The sequence files for 
gene clusters of chromomycin A3 from S. griseus and 
mithramycin from S. argillaceus were downloaded in 
GenBank format from NCBI database with accession 
numbers AJ578458 and X89899, respectively. 

Genetic organization study:

For gene clusters analysis, the web tool antiSMASH 
(antibiotics and secondary metabolite analysis  
shell)[11] was used and the editing of genetic 

organizations of both aureolic acids was done 
manually. Mauve application v 2.3.1 was used for 
further visualization[12].

Sequences retrieval for 3D structure predictions:

Sequences of KSα subunits of type II PKSs were 
collected from DoBISCUIT and NCBI for selected 
polyketides i.e. chlortetracycline, chromomycin A3, 
mithramycin and polyketomycin and these sequences 
are found under accession numbers (GenPept: 
BAB12566, CAE17527, CAA61989 and ACN64834, 
respectively) in NCBI. Multiple sequence alignment 
of selected polyketides along with their template was 
performed through Geneious[13].

Models building by homology modelling:

To predict 3D structures of chlortetracycline, 
chromomycin A3, mithramycin and polyketomycin 
homology modelling was used, which is the most 
suitable method for building protein models[14]. CPH 
model server was used to select template[15]. Modeller 
v9.11 was used for template and query alignments[16] 
using align2d command and output file in PIR format 
was used for building five models against each query. 
The analyses for model evaluation and quality for all four 
models were done by ProSA-web Z-score[17], Qmean 
plot[18] and PROCHECK Ramachandran plot[19]. Root 
mean squared deviation (RMSD) and superimposition 
of each query and template structure were performed 
using UCSF Chimera 1.10 workbench[20].

RESULTS AND DISCUSSION

The biosynthetic gene cluster of chromomycin A3 was 
compared to that of mithramycin for genes involved 
only in polyketide biosynthesis and post-polyketide 

A

B

Fig. 1: Genetic organizations of chromomycin A3 and mithramycin showing polyketide and post-polyketide genes 
Genes are indicated by arrows oriented in the transcriptional direction. Sequences of gene clusters of chromomycin A3 and 
mithramycin were taken of S. griseus and S. argillaceus, respectively. The location and size of respective genes are as follows: 
(A) Chromomycin A3:  aromatase 39331-40288 (958 bp);  ketoreductase 38436-39198 (763 bp);  oxygenase 36761-38435 
(1675 bp); ketoreductase 21345-22329 (985 bp); oxygenase 19817-21338 (1522 bp);  methyltransferase 17529-18603 (1075 bp); 
methyltransferase 15687-16716 (1030 bp);  KS 9955-11224 (1270 bp);  CLF 8690-9959 (1270 bp);  cyclase 8181-8610 (430 
bp); Oxygenase 6854-8102 (1249 bp);  ACP 1584-1836 (253 bp);  ketoreductase 824-1583 (760 bp); cyclase 7-784 (778 bp). (B) 
mithramycin:ketoreductase 10619-11381 (763 bp); Oxygenase 11397-12993 (1597 bp); oxygenase 12985-13285 (301 bp); aromatase 
14865-15813 (949 bp); cyclase 16024-16477 (454 bp); KS 16657-17926 (1270 bp); CLF 17922-19149 (1228 bp); ACP 19208-19466 
(259 bp); ketoreductase 19496-20261 (766 bp); oxygenase 20264-21575 (1312 bp); cyclase 21578-22352 (775 bp);  reductase 
27066-28047 (982 bp); methyltransferase 30884-31865 (982 bp); methyltransferase 31927-32965 (1039 bp); oxygenase 35654-37256 
(1603 bp)
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steps (fig. 1). A great difference in the genetic 
organizations of both polyketides was observed. 
Ketosynthase (KS), chain length factor (CLF) and acyl 
carrier protein (ACP) are involved in the biosynthesis 
of minimal PKS. In the gene cluster of mithramycin, 
all these three genes are located together in the central 
region of the cluster whereas KS and CLF genes are 
located together and ACP is located more than 8 kb 
distant downstream in the gene cluster of chromomycin 
A3. One more difference in polyketide biosynthesis 
of two polyketides is the location of bifunctional 
cyclase/aromatase gene. The gene is similar to various 
aromatases and involved in the biosynthesis of type II 
polyketides such as in mithramycin[21]. The location of 
aromatase in the gene cluster of chromomycin A3 is 
pretty unusual as it is present at one end of the cluster 
that is far from KS gene whereas it is located very close 
to KS in the gene cluster of mithramycin. Talking about 
post polyketide steps, three ketoreductase genes were 
found in the gene cluster of chromomycin A3 but two 
in that of mithramycin.

The organizations of genes involved in the biosynthesis 
of chromomycin A3 and mithramycin were also shown 
through Mauve alignment (fig. 2). Similarities and 
differences in both biosynthetic gene clusters could 
easily be visualized in Mauve alignment and it was 
in fully accordance with the gene cluster analysis 
performed through antiSMASH.

Modeller v9.11 was used for homology modelling and 
the template was selected (PDB:1TQY) on CPH server. 
Alignment of all four queries along with their template 
was shown in fig. 3. Five models for each query 
were developed using Modeller v9.11 and the best 

model of each query was selected on the basis of their 
structural evaluations through ProSA-web Z-scores 
and PROCHECK Ramachandran plots. Z-score values 
of 7.75 for chromomycin, 9.3 for chlortetracycline, 
10.52 for mithramycin and 9.99 for polyketomycin 
respectively, confirmed that both target proteins and 
template have similar folds. Ramachandran plots were 
obtained from PROCHECK server and they showed 
that 90.5% of residues for chlortetracycline, 86.7% 
for chromomycin, 91% for mithramycin and 92.6% 
for polyketomycin were in most favoured regions  
(fig. 4). Superimpositions of each model with template 
(reference structure) using UCSF Chimera v1.10 
program (fig. 5) showed very low RMSD values of 
0.399 Å for chromomycin and chlortetracycline, 0.191 
Å for mithramycin and polyketomycin, and 0.395 Å for 
chromomycin and mithramycin, respectively. Very low 
values of RMSD proved that there are high similarities 
between each query and template. The statistics of 
sequence alignments of template and queries are given 
in Table 1.

We compared the biosynthetic gene clusters of two 
aureolic acids to find out the dissimilarities between 
them. Genetic organizations of biosynthetic clusters in 
many cases are pretty similar for structurally related 
bacterial polyketides. However, this similarity was not 
reflected at biosynthetic genes level for chromomycin 
A3, a polyketide that is closely related in its chemical 
structure to mithramycin and a very different genetic 
organization was observed in both biosynthetic gene 
clusters. The genes involved in polyketide biosynthesis 
were grouped in the central part of the biosynthetic gene 
cluster of mithramycin while they scattered throughout 

Fig. 2: Mauve alignment of the biosynthetic gene clusters of two aureolic acids
A) Chromomycin A3, B) mithramycin. Each coloured block is representing a locally co-linear block containing no apparent re-
arrangements. Chromomycin A3 is shown in reverse complement (inverse) orientation. Areas that are completely white were not 
aligned and the height of the colour bars represents the average degree of sequence similarity. KS: ketosynthase, CLF: chain length 
factor and ACP: acyl carrier protein 
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the cluster in chromomycin A3. Form this observation, 
it was suggested that bacterial aromatic polyketide 
biosynthetic clusters among different Streptomyces 
species might have been transferred horizontally and 
therefore, quite similar polyketide biosynthetic gene 
clusters can be observed in distantly related bacterial 
species[22]. Evolution could be responsible if this 
transfer has occurred in case of chromomycin A3 and 
mithramycin that has probably rearranged the genes 
and caused differences in gene organizations of both 
clusters[2]. 

This is the first study in which 3D models of KSα 
proteins of both aureolic acids were also prepared and 
superimposed with closely related polyketides of other 
families to study similarities between them. RMSD 
plays an important role to measure the similarity in 3D 
structures after optimal rigid body superimposition. 
A very large value of RMSD means the structures, 
which are superimposed are dissimilar and zero RMSD 
means structures are identical in their confirmation[23]. 
Because mithramycin and chromomycin A3 belong 
to the same group of polyketides i.e. aureolic acid, 
here an interesting observation was found that RMSD 

value of 0.191 Å for mithramycin and polyketomycin 
showed better superimposition hence more structural 
similarities as compared to mithramycin and 
chromomycin A3 superimposition with an RMSD value 
of 0.395 Å. The RMSD values for superimpositions 
of chromomycin A3 and chlortetracycline, and that 
of chromomycin A3 and mithramycin were almost 
identical i.e. 0.399 Å and 0.395 Å, respectively, 
which revealed that chromomycin A3 has nearly equal 
structural similarities for both polyketides. These 
observations were again justified by the alignment 
scores. Mithramycin and polyketomycin for 420 atom 
pairs gave better alignment score of 1757.6 whereas 
mithramycin and chromomycin for 360 atoms gave 
851.1 alignment score. Similarly, chromomycin A3 
with chlortetracycline and mithramycin gave nearly 
equal alignment score i.e. with chlortetracycline gave 
794.8 alignment score between 374 atoms and with 
mithramycin 851.1 between 360 atoms. Similar results 
were also found by Feng et al.[24] who conducted 
phylogenetic studies for different classes of polyketides. 
They generated a phylogenetic tree for KSβ subunit 
of type II PKSs and found that chromomycin A3 
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Fig. 3: Multiple sequence alignment of template (1TQY (a)) with selected polyketides 
Chlortetracycline (b), chromomycin A3 (c), mithramycin (d) and polyketomycin (e). Green bars are showing highly conserved 
residues while olive bars are showing most conserved residues
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Fig. 4: 3D model evaluations
A) Chlortetracycline, B) chromomycin A3, c) mithramycin, d) polyketomycin. †Ramachandran plot analyses for predicted models. 
The plot statistics are: residues in the most favoured region (red); residues in allowed (yellow) and in generously allowed (light 
yellow) region. ††Z-score plots from ProSA-web server showing the quality of predicted models in NMR region (dark blue). 
†††Energy plots showing all residues of predicted models at very stable positions (dark green lines)
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showed more similarities towards tetracycline class of 
polyketides rather than for mithramycin i.e. aureolic 
acid. The current study has also justified the findings of 
Zhang et al.[25] that aureolic acids were more likely to 
be derived from a cyclization pathway of tetracycline-
like and in fact a number of highly homologous 
enzymes are shared by the biosynthetic pathways of 
mithramycin and oxytetracycline such as cyclases 
and tailoring enzymes. Later, it was identified that 
premithramycin B was transformed into an aureolic 
acid structure by oxygenase MtmOIV through fourth 
ring Baeyer-Villiger oxidative cleavage[26]. The enzyme 
homologue to cyclase MtmOIV was also identified in 
the biosynthetic gene cluster of chromomycin A3

[2] 
derived from prechromomycin B, which is a tetracylic 
intermediate[27].

KSs are the most conserved domains and found as 
essential part of each PKS gene cluster as they have 
been used to identify PKS genes from individual 
bacterial strains[28] and environmental DNA[29]. Each 
catalytic site is encoded on a distinct protein by type 
II PKSs, which also called iterative type of PKS. Two 
discrete KS domains are encoded by type II PKSs 
i.e. KSα and KSβ. The former domain performs 
condensation reaction while KSβ that also known 

as CLF defines the number of iterative condensation 
steps[30]. As the arrangement of genes of two pathways 
is totally different in the organizations of both aureolic 
acids but synthesis of similar intermediates is still 
accomplished in the most effective way therefore, 
it can be suggested that arrangement of genes does 
not influence the arrangement of protein at all[2]. The 
findings of this study suggested that care should be 
taken while classifying different bacterial polyketides 
on the basis of their KSα genes.

Chromomycin A3 and mithramycin are members of 
the aureolic acid family of antitumor antibiotics and 
are effective against Gram-positive bacteria as they 
inhibit growth and multiplication of several cancer cell 
lines[31]. This inhibiting activity of aureolic acids comes 
through interaction in an Mg2+-dependent manner with 
regions of GC-rich in the minor groove of DNA[32]. 
Zn2+ metalloenzymes including alcohol dehydrogenase 
(ADH) can also be inhibited by both aureolic acids 
through binding at zinc centers and disruption of 
quaternary structure of the metalloenzyme complex. 
This property makes these aureolic acids potential 
therapeutic agents against neurodegenerative disorders 
and metal dyshomeostasis[33].

In conclusion, for the analysis of growing volume 

A         B     C
Fig. 5: Superimpositions of predicted models for KSα subunits done by Chimera v1.10
(A) superimposition of KSα from chromomycin A3 (green) and chlortetracycline (red), (B) superimposition of KSα from mithramycin 
(magenta) and polyketomycin (blue), (C) superimposition of KSα from chromomycin A3 (green) and mithramycin (magenta)

Query Template Identical 
sites

Pairwise 
%identity

Molecular wt. 
(mean) (kDa)

Isoelectric 
point (mean)

Extinction  
coefficient (mean)

Standard 
deviation

Chlortetracycline

1TQY

262 62.1 44.911 4.89 35 848 0.5
Chromomycin A3 289 68.5 44.676 5.36 32 290 0.0
Mithramycin 271 64.2 44.590 4.92 32 228 0.5
Polyketomycin 284 67.3 44.498 4.76 31 670 0.0

TABLE 1: STATISTICS OF SEQUENCE ALIGNMENTS OF TEMPLATE AND QUERIES
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of DNA sequence data new bioinformatics tools are 
needed. This is especially true in case of biosynthesis 
of secondary metabolites where major challenges for 
accurate sequence assembly and analysis are created 
by highly repetitive nature of associated genes. The 
current study has proven that biosynthetic gene clusters 
of an antitumor antibiotic chromomycin A3 synthesized 
by S. griseus has different genetic organization as 
compared to mithramycin that is a closely structurally 
related polyketide of the same class i.e. aureolic acid. 
Moreover, the 3D structures of KSα subunit of type 
II PKS of both aureolic acids have shown less degree 
of structural superimposition as compared to other 
classes of polyketides. Mithramycin has shown a better 
structural superimposition with polyketomycin i.e. a 
tetracyclic quinone rather than chromomycin A3. These 
incongruences are due to different rates of evolution 
of bacterial biosynthetic genes and more importantly 
to the process of horizontal gene transfer (HGT) that 
has been now widely recognized as a major force 
driving bacterial evolution. The dissimilarities are 
clearly indicating that HGT for both aureolic acids has 
gone through different directions. As the classification 
of bacterial polyketides plays a vital role to identify 
and study biosynthetic pathways of novel polyketides 
therefore, findings of this study will surely help in 
correct organization and classification of different 
classes of polyketides in future. 
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