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Diabetes remains with infected person and leads 
to death if proper medication not taken, till date 
no suitable prophylactic treatment available for 
diabetes mellitus. Diabetes mellitus is a metabolic 
disorder caused by several factors including glucose 
metabolism, environmental power, wounds healing, 
acidity in stomach, genetic imperfections defects, 
endocrinopathy, exocrine pancreatitis and sudden 
infection. Based on condition and sensitivity of β cell 
in pancreas, diabetes mellitus divided into two 
forms, type 1 (T1DM) and type 2 diabetes mellitus 
(T2DM). Among these forms, T2DM considered to be 
dangerous, causes maximum deaths worldwide. Thus 
if the specified treatment not taken for T2DM leads to 
fluctuation in body cell can cause numerous chronic 
complications such as retinopathy, nephropathy, 
neuropathy, and cardiovascular diseases, the latter 
leading to increased mortality. Over all 90% of the 
total occurrence diabetes cases were due to T2DM, 
which is characterized as hyperglycemia, insulin 
resistance, hyperlipidemia, surplus glucagon secretion 
and insufficient secretion of the incretin hormone 
glucagon-like peptide-1 (GLP-1)[1,2]. GLP-1 is an 
insulinotropic hormone with antidiabetic activity due 
to its effects on glucose-dependent stimulation of 
insulin and inhibition of glucagon secretion, tropic 

repairing of pancreatic β-cells, reduction of gastric 
emptying and appetite[3]. The several enzyme were 
responsible for insulin activation and deactivation. 
Inactivation of the insulin leads to problem and 
occurrence of the T2DM. The enzyme which 
increased the sensitivity of insulin was GLP-1 and 
incretins. But GLP-1 inactivated in presence of serine 
peptidase enzyme[4]. The serine peptidase enzyme 
dipeptidyl peptidase IV (DPP IV) is responsible for 
degradation of GLP-1, which decreases the release 
of insulin. DPP IV also known as CD26, is a type II 
transmembrane glycoprotein expressed on a variety 
of cell types with multifunctional properties, its 
inhibition is the treatment of T2DM[3,4]. Thus for 
maintaining and controlling the level of insulin 
there is necessitate of inhibition of targeted enzyme 
DPP IV. Now DPP IV is a clinically validated 
target for the management of type 2 diabetes[5,6] 
and has received considerable curiosity from the 
pharmaceutical industry in last few years. These 
approaches to utilize the beneficial effects of GLP-1 
in the treatment of T2DM by the development of 
orally active DPP IV inhibitors have been considered. 
Preclinical studies suggested that this approach is 
effective in enhancing endogenous levels of GLP-1 
resulting in improved glucose tolerance in glucose-
intolerant and diabetic animal models[7–9]. Since the 
discovery that the in vivo liability of GLP-1 was due 
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to its rapid inactivation by DPP IV, a number of low 
molecular weight, orally active DPP IV inhibitors, 
suitable for clinical use, have been developed. DPP 
IV inhibition has thereby been demonstrated to be 
anti diabetic both in animal models of diabetes and 
in patients with T2DM. 

Some inhibitors described in the literature[10–12] and 
a number of are even undergoing various stages of 
clinical trials and approved such as vildagliptin[13], 
sitagliptin[14,15] in order to succeed as potent 
antidiabetic drugs[16]. However, there is still a need 
for more potent, selective and safe DPP IV inhibitors, 
which lack the in specificity and side-effects 
possessed by the presently available inhibitors. 

The selected β-amino amide inhibitor series designed 
by Heung et al[17]. seemed to be quite promising 
due to their varied structure activity profiles. The 
Hologram quantitative structure activity relationships 
(HQSAR) had been applied in order to correlate the 
structural or property descriptors of these compounds 
with their experimental activities. 

The HQSAR methods have certain advantages over 
classical QSAR methods, which are simple less time 
consuming, robust and do not require determination 
of 3D structures and molecular alignment or putative 
binding conformation. However, HQSAR provide 
more unique solutions and also overall predictive 
quality be as good as classical (Hansch, Fujita and 
Free Wilson QSAR) and computational approach 
which where more complex and less demanding.

The fragment collision is limitation of HQSAR 
technique, which happens during the hashing 
process of fragments generation. In fragmentation 
process hashing reduces the length of the hologram 
and bin collection pattern of part of fragments. 
The hologram length, parameter definable by 
user, controls the number of bins in the hologram 
and alteration of hologram length can causes the 
pattern of bin occupancies to change. The program 
provides 12 default lengths which have been found 
to give good predictive models on different datasets. 
Each of these default lengths provides a unique set of 
fragment collisions.

HQSAR was used to study a set of β-amino amide 
scaffold. HQSAR was used to identify structural 
features with poor and favorable contributions towards 

molecular interactions in the active site. In addition, 
HQSAR has been used in virtual screening to identify 
hits. For instance, we studied a set of 34 β-amino 
amide derivatives having potent DPP IV inhibitory 
activity. 

MATERIALS AND METHODS

Structure assessment:
A total of 34 molecules with DPP IV inhibitory 
activity[17] were selected for HQSAR analysis and 
chemical structure constructed on the Sketch module 
of Sybyl X2.0 software. The HQSAR studies require 
the minimization of structure, calculation of the 
force field and charges. The energy minimization 
and charge calculation done by Tripos force field 
and Pullman charge, respectively. Further statistical 
analysis performed by HQSAR technique with PLS 
validation. PLS validations performed with leave one 
out (LOO) and no validation method. 

Data set:
The series of total thirty four β-amino amide 
analogues with IC50 nM collected from the previous 
reported literature, which was suitable for the HQSAR 
analysis. The similarity on pharmacological activity 
(Mouse DPP IV enzyme) of dataset is one of the 
important aspects for HQSAR Studies (fig. 1)[17]. For 
performing the further analysis the pharmacological 
activity of selected series IC50 (IC50=activity 
ranges from 569 to 24.9 nM) was converted to 
pIC50 (pIC50=activity ranges from 7.943 to 6.001). The 
converted pIC50 was considered as dependent variable 
in the HQSAR analysis for model generation. The 
model generation depends on the training and test set 
(Table 1). Thus the dataset was divided into the test 
set and the training set by diversity and dissimilarity 
method, so that all structure dataset covers the 
structural diversity, chemical assessment, chemical 
prototype and complete range of pharmacological 
activity of both set. The series consist of eight tests 
set molecule for external validation and remaining 
considered as training set molecule for internal 
validation. Therefore it has been recommended that 
generated models should be tested on a sufficiently 
large test set to establish a statistically meaningful and 
reliable HQSAR model[19-21].

HQSAR studies:
HQSAR technique does not require the alignment 
of dataset on common template, after completion 
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of statistical parameter analysis provides exact 
information of required of functional group with 
contribution into the chemical structure. HQSAR is a 
novel technique requires 2D structure which employs 
specialized fingerprints as predicted variable of 
pharmacological activity. The pharmacological activity 
data pIC50 considered to be a dependent variable. The 
HQSAR model generated on the two steps firstly 
calculation of molecular fingerprints and secondly 
PLS validation analysis. Concerned sensitivity of 
the generated model depends on the parameters as 
hologram length, Fragment size and fragment distinct. 
The different combination were tried to obtain a better 
model which statistically provides the information 
regarding the structural requirement. The analysis was 
based on the fragment distinction and fragment size.

Fragment distinction:
The several fragment distinction imported which 
imparted a better idea. The fragment distinct available 
were atoms (A), bonds (B), connections (C), hydrogen 
atoms (H), chirality (Ch), and donor and acceptor 
(DA). The several combinations were taken in search 
of better understanding of the dataset and future 
suggestion of the novel structure. We performed the 
HQSAR analyses by screening the 12 default series of 
hologram length values ranging from 53 to 401 bins, 
initially using the fragment size default (4–7). The 
16 combination which were selected for analysis 
as A/B, A/B/C, A/B/H, A/B/Ch, A/B/DA, A/B/C/H, 
A/B/C/Ch, A/B/C/DA, A/B/H/Ch, A/B/H/DA, A/B/Ch/
DA, A/B/C/H/DA, A/B/C/H/DA, A/B/C/H/DA, A/C/H/
DA and A/C/H/Ch/DA. The fragment distinction based 
model generated the statistical parameter on the basis 
of which further analysis performed. The statistical 
parameter obtained after completion of analysis were 
NC, q2, r2, SE, BHL and predicted pIC50, which 
provides the useful information on the basis of best 
model subsequently fingerprint structure saved with 
color coding. The best model coming out of sixteen 
combinations were A/B/C and A/B/DA. The predicted 
pIC50 activity of the best model A/B/C of default 
fragment size 4-7 presented in the Table 1. 

Fig. 1: The structures of molecule used in training and test set.

TABLE 1: THE ACTIVITY DATA OF 34 β-AMINO AMIDE 
ANALOGUES
SN R1 IC50 

(nM)
Actual 
pIC50

Predicted 
pIC50

Residual

1. 85.7 6.712 6.758 −0.046

2.* 194 6.067 6.998 −0.931

3. 291 6.536 6.492 0.044

4. 264 6.578 6.612 −0.034

5.* 99.7 6.001 6.969 −0.968

6. 569 6.244 6.202 0.042

7. 50.4 6.297 7.301 −1.004

8. 101 6.995 7.092 −0.097

9.* 103 6.987 7.044 −0.057

10. 212 6.673 6.667 0.006

11. 52.6 7.279 7.309 −0.03

12. 45.3 7.343 7.301 0.042

13.* 39.0 7.408 7.332 0.076

14. 64.6 7.190 7.217 −0.027

15.* 56.4 7.248 7.263 −0.015

Condt...
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Fragment size:
On the default fragment size 4-7 two statistically 
optimum combination obtained with different 
fragment distinction, chosen for further study which 
developed statistically best model. The selected 
fragment distinctions with better result were A/B/C 
and A/B/DA on which additional analysis performed 
through different fragment size. The 13 different 
fragment size preferred for analysis were 2-5, 3-6, 
4-7, 5-8, 6-9, 7-10, 8-11, 2-6, 3-7, 4-8, 5-9, 6-10 and 
7-11. The statistical parameter generated on these 
fragment size as NC, q2, r2, SE and BHL.

RESULTS AND DISCUSSION

The selected dataset homogeneity achieved by in 
vivo analysis on mouse by DPP IV inhibition assay, 
compound 21 has least IC50 of 24.9 nM. So the 
compound 21 in dataset is most active. HQSAR 
analysis was performed on the dataset to identify 
the minimal 2D sub-structural requirement for 
antidiabetic activity besides the well-known role of 
the β-amino amide analogues. The dataset selected 
for the HQSAR study consist of 34 β-amino amide 
analogs is presented in Table 1. For HQSAR 
analysis purpose given IC50 nM converted to 
pIC50 nM. The frequency of statistical parameters 
depend on the range of acceptably distributed 
IC50 (569-24.9) and pIC50 (7.943-6.001). The 
dataset taken shows the diversity ratio range of 
pharmacological activity, in which it was easy to 
perform the analysis data. 

The most commonly used techniques to generate 
QSAR models are multiple linear regression (MLR), 
genetic algorithm, principle component analysis, 
single linear regression and partial least squares 
(PLS). Classical QSARs most frequently use MLR 
where the ratio of the data points to the number of 
number of descriptors should not exceed five. While 
PLS analyses are particularly suited to situations 
where the number of descriptor variables exceeds the 
number of observations it is often the case that the 
principal components extracted from the descriptor 
variables has unclear physical meaning. It should 
be noted that the HQSAR technique does allow 
physical interpretation of PLS extracted QSAR model 
components in terms of 3D contour maps and also 
fragment counting and PLS analysis, are very fast. 

TABLE 1: Condt...
SN R1 IC50 

(nM)
Actual 
pIC50

Predicted 
pIC50

Residual

16. 45.3 7.343 7.338 0.005

17. 53.4 7.272 7.306 −0.034

18.* 56.9 7.244 7.268 −0.024

19. 47.7 7.321 7.307 0.014

20.* 67.7 7.169 7.142 0.027

21. 24.9 7.603 7.590 0.013

22. 65.4 7.184 7.215 −0.031

23. 57.6 7.239 7.201 0.038

24.* 74.4 7.128 7.094 0.034

25. 91.5 7.038 7.066 −0.028

26. 31.2 7.505 7.510 −0.005

27. 50.6 7.295 7.299 −0.004

28. 33.9 7.469 7.463 0.006

29. 76.2 7.118 7.173 −0.055

30. 36.7 7.435 7.400 0.035

31. 42.2 7.374 7.289 0.085

32. 30.5 7.515 7.510 0.005

33. 113.9 7.943 7.103 0.84

34. 57.4 7.241 7.160 0.081

*Test



146 Indian Journal of Pharmaceutical Sciences March - April 2015

www.ijpsonline.com

The generated model consistency depends on 
statistical parameters, quality of both training and 
test sets in terms of chemical structural diversity and 
property value distributions. Training and test sets 
were carefully divided in such a way that structurally 
diverse ratio maintains on molecules of a wide range 
of pharmacological activities were included in both 
sets (fig. 2). From the original data set, twenty six 
compounds were selected as members of the training 
set for internal model predictivity, whereas the other 
eight compounds (2, 5, 9, 13, 15, 18, 20 and 24) 
were selected as members of the test set for external 
model predictivity. The graph was generated to 
suggest the distribution of the data set. A statistical 
cluster analysis confirmed that the composition of 
both training and test sets is representative of the 
whole data set, as can be seen in fig. 3.

The training and test molecule utilized in generation 
of the best statistical model which were further 
helpful in exploring novel compound. Thus, the 
dataset after dividing into the training and test set 
considered as appropriate for the purpose of HQSAR 
model development. 

The role of the β-amino amide analogues is well 
established for defining antidiabetic activity. Thus 
HQSAR gave an insight into the quantitative role in 
determination of the chemical structural features in 
modulating antidiabetic activity in terms of favourable 
and unfavourable maps. 

HQSAR models were generated on resultant series 
of DPP IV inhibitors activity (Table 1). HQSAR 
correlates pharmacological activity of dataset to 
structural fragments of selected series. In the HQSAR 

analysis several parameters were available slight 
changes in the parameter affects the results thus 
tried on different ways. As HQSAR models can be 
generated by a number of parameters concerning 
hologram generation, several combinations of 
fragment distinction were considered during the 
HQSAR modeling runs. Holograms were created 
using different combinations of atoms (A), bonds (B), 
connections (C), hydrogen atoms (H), chirality (Ch), 
and donor and acceptor (DA) as fragment distinctions. 

We performed the HQSAR analyses by screening the 
12 default series (53, 59, 61, 71, 83, 97, 151, 199, 
257, 307, 353 and 401) of hologram length values 
ranging from 53 to 401 bins, initially using the 
fragment size default (4–7). The patterns of fragment 
counts from the training set inhibitors were related to 
the experimental biological activity using the partial 
least square PLS analysis. The 16 combination which 
were selected for analysis as A/B, A/B/C, A/B/H, 
A/B/Ch, A/B/DA, A/B/C/H, A/B/C/Ch, A/B/C/DA, 
A/B/H/Ch, A/B/H/DA, A/B/Ch/DA, A/B/C/H/DA, 
A/B/C/H/DA, A/B/C/H/DA, A/C/H/DA and A/C/H/
Ch/DA. The statistical results obtained from PLS 
validation analyses using several fragment distinction 
combinations and the default fragment size (4–7) is 
presented in Table 2. 

On analysis different model were generated on the 
basis of the statistical parameters the best model 
selected. According to Table 2, the best statistical 
results among all models using the training set 
compounds were obtained for model 03 (r2=0.971, 
q2=0.971, BHL 353, NC 6), which was resultant using 
the following combination of fragment distinctions: A, 
B, and C, with six being the optimum number of PLS 

Fig. 2: The β-amino amide analogues predicted pIC50 with all dataset.
 Dataset,  Training,  Test.
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components. This indicates that bonds, connections 
and donor and acceptor atoms are essential features 
of the molecular structures for biological activity. The 
two best fragment distinction were selected as A/B/C 
and A/B/DA and tried on the different fragment size.

In the fragment size maximum and minimum size 
was changes which alter the statistical parameters. 
On 13 different fragments size with selected fragment 
distinction A/B/C and A/B/DA for further study 
started. The influence of fragment size is of primary 
importance in the generation of HQSAR models, as 
this parameter controls the minimum and maximum 
lengths of fragments to be encoded in the hologram 
fingerprint. Hence, distinct fragment size combinations 
(2-5, 3-6, 4-7, 5-8, 6-9, 7-10, 8-11, 2-6, 3-7, 4-8, 
5-9, 6-10 and 7-11) were investigated for the best 
model (model 13, Table 3) generated with the 
fragment size default (4–7). The HQSAR results 
obtained for several fragment sizes are displayed 
in Table 3, but no improvements were achieved in 
the statistical parameters. Although a measure of 
internal consistency, available in the forms of q2 
and r2, is certainly important and significant, the 
most valuable test of a QSAR model is its ability 
to predict the activity of compounds not included in 
the training set. The structure encoded within a 2D 
fingerprint is directly related to biological activity 
of molecules within the training set, the high quality 
HQSAR models generated in this study can predict 
the activity of new structurally-related β amino 
amide analogs from its fingerprint. In this way, the 
predictive power of the best HQSAR model derived 
from the training set molecules (fragment distinction 
A/B/C; fragment size 4–7, Table 1) was assessed by 
predicting the pIC50 values for the test set compounds. 
The statistical parameters of external validation results 

are listed in Tables 2 and 3, and the graphic results 
for the experimental versus predicted activities of both 
compound sets (training and test sets) are displayed 
in fig. 3.

The training set internal predictivity residual value 
obtained as difference of the actual and predicted 
pIC50 (Table 1), gives idea of the compound of 
minimum and maximum change in the activity of 
dataset while prediction of the model. The residual 
value least obtained for compounds 16 and 32 as 
0.005 contains a functional group Phenyl SO2NH2 and 
3 Phenyl pyridine. The both compound contains the 

Fig. 3: The relation between actual pIC50 vs predicted pIC50 activity. 
Series 1= training set; Series 2=test set;  Series1,  Series2.

TABLE 2: THE STATISTICS MODELS OF FRAGMENT 
SIZE (4-7)
Model Fragment distinct NC q2 r2 Ensemble q2 SE BHL
1 A/B 4 0.881 0.921 0.902 0.076 307
2 A/B/H 3 0.776 0.911 0.907 0.069 257
3 A/B/C 6 0.971 0.971 0.962 0.056 353
4 A/B/Ch 4 0.842 0.918 0.917 0.084 353
5 A/B/DA 6 0.957 0.942 0.952 0.063 257
6 A/B/C/H 5 0.872 0.918 0.932 0.096 353
7 A/B/C/Ch 6 0.723 0.867 0.922 0.083 199
8 A/B/C/DA 4 0.851 0.931 0.942 0.055 307
9 A/B/H/Ch 6 0.821 0.901 0.924 0.076 353
10 A/B/H/DA 6 0.921 0.915 0.929 0.089 307
11 A/B/Ch/DA 6 0.731 0.874 0.927 0.087 353
12 A/B/C/H/DA 6 0.928 0.879 0.892 0.096 257
13 A/B/C/H/DA 6 0.836 0.761 0.862 0.069 257
14 A/B/C/H/DA 6 0.724 0.909 0.874 0.078 199
15 A/C/H/DA 6 0.897 0.934 0.862 0.083 353
16 A/C/H/Ch/DA 6 0.893 0.937 0.862 0.066 257
NC: Number of component, SE: standard error, BHL: best hologram length, 
A: atom, B: bond, C: connections, H: hydrogen, Ch: chirality, DA: donor and 
acceptor

TABLE 3: THE STATISTICS PARAMETER OF FRAGMENT 
SIZE AND DISTINCT
ML FS NC q2 r2 SE BHL

A1 A2 A1 A2 A1 A2 A1 A2 A1 A2
A 2‑5 6 5 0.909 0.731 0.909 0.731 0.089 0.055 257 353
B 3‑6 6 5 0.867 0.928 0.867 0.928 0.087 0.076 199 257
C 4‑7 6 5 0.971 0.957 0.971 0.942 0.056 0.063 353 257
D 5‑8 6 5 0.918 0.917 0.872 0.909 0.076 0.096 257 353
E 6‑9 6 5 0.867 0.915 0.723 0.867 0.089 0.083 199 257
F 7‑10 6 5 0.931 0.874 0.851 0.872 0.087 0.055 353 257
G 8‑11 6 5 0.901 0.879 0.821 0.723 0.066 0.076 257 199
H 2‑6 6 5 0.915 0.761 0.921 0.851 0.059 0.089 257 353
I 3‑7 6 5 0.874 0.909 0.731 0.915 0.096 0.087 257 257
J 4‑8 6 5 0.879 0.867 0.928 0.874 0.046 0.066 353 257
K 5‑9 6 5 0.761 0.931 0.836 0.879 0.087 0.089 257 257
L 6‑10 6 5 0.909 0.901 0.909 0.761 0.066 0.087 257 199
M 7‑11 6 5 0.934 0.915 0.867 0.909 0.089 0.096 199 353
A1=A/B/C; A2=A/B/DA, NC: Number of component, SE: standard error, BHL: best 
hologram length, A: atom, B: bond, C: connections, H: hydrogen
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phenyl ring with the nitrogen atom free as amine and 
in ring as pyridine. The compound 33 has maximum 
residual value as 0.84, functional group 3-fluoro 
pyridine. Thus the clue obtained after prediction is 
that if the nitrogen containing ring is attached with 
the electron donating then the residual value obtained 
was less and more with the electron withdrawing 
functional group. The IC50 value for the compound 
16, 32 and 33 (45.3, 30.5 and 113.9), predicting 
value for these compound were 7.33, 7.510 and 
7.103, respectively. So the residual value has its own 
importance in predicting the dataset. The range of 
the pIC50 obtained after generation of the suitable 
model was 7.59-6.202 and for residual value was 
-1.004-0.84.

The data points have larger residual value, concern 
to higher difference among actual activity and 
predicted activity. The larger residual value generated 
outlier data point of track changes compounds. 
The correlation of physicochemical parameter and 
predicted activity of compounds 6 and 33 (fig. 3) 
have an extreme change in value for one or more 
leverage predictors parameters, therefore have large 
effects on the PLS analysis therefore predicted value 
alters rapidly. As a results removal of outlier should 
not modify the statistical value. It is tempting to 
remove such compounds practically. Such removal is 
seldom acceptable and if performed, must be carefully 
recoded. In building the models, compound 33 and 
6 was treated as an outlier, because including this 
compound the optimal models yielded a high residual 
value and poor biological activity respectively.

The external validation is trustworthy processes as 
the test set compounds are completely excluded 
while the internal predictivity of the training of the 
model. For external predictivity the test set compound 
included and final process performed. The very 
good relation between experimental and predicted 
pIC50 values for the test set compounds indicates the 
robustness of the HQSAR model (r2

pred=00.91). As 
seen in Table 1, the predicted values fall close to 
the experimental pIC50 values, deviating by less than 
0.027, 0.034 and 0.076 log units for 20, 24 and 13 
compounds respectively. The predictivity less changed 
in term of log unit for the compound 24. The HQSAR 
model obtained is reliable and can be used to predict 
the pharmacological activity of novel compounds 
within this structural class. Besides predicting the 
pharmacological activity of untested molecules, 

HQSAR models provide important information 
regarding clues as to what molecular fragments 
are directly related to pharmacological activity. 
This idea of better understanding can be achieved 
through a careful interpretation of the chemical 
structural fragments integrated to the hologram-based 
QSAR models. HQSAR models can be graphically 
represented in the form of contribution maps where 
the color of each molecular fragment reflects the 
contribution of an atom or a small number of atoms 
to the activity of the molecule under study. The 
contribution map obtained from the HQSAR module 
implemented in SYBYL-X 2.0 uses a color scheme to 
discriminate individual atomic contributions to activity. 
The colors encoded in structure fragment at the red 
end of the spectrum (red, red-orange and orange) 
reflect poor contributions, whereas colors encoded in 
structure fragment at the green end (yellow, green-blue 
and green) reflect favorable contributions.

Atoms with intermediate or moderate contributions 
in pharmacological activity are colored as white. The 
intermediate contributor was helpful in maintaining 
the common structure only but they are not 
contributing more towards the activity side. Atoms 
corresponding to the maximal common structure 
(MCS) are colored cyan, since it is common to all 
compounds and contributes in the same manner for 
all molecules in the training set. 

The most important fragments of compounds 7 and 
11 (two of the most potent inhibitors of the data 
set) along with slight lower activity of compound 
8 and 1, the least potent inhibitor of the training 
set are 3, 4 and 6 presented in fig. 3. According 
to the contribution maps, the molecular fragments 
corresponding to the phenyl moiety with cyano 
group are strongly related to pharmacological affinity 
(green).

We also observed important structural features such 
as regions with poor contributions (colored in orange 
and red) that can be identified as potential achieved 
targets for molecular modification and further creation 
of SAR studies (fig. 4). The color coding is based on 
the activity contribution of the individual atoms of the 
molecules. The individual atomic contribution of the 
most potent compounds is presented in fig. 4 where 
the bulky and electron donating group were attached 
to the β-amino amide ring define the antidiabetic 
activity, in addition to the well-known β-amino amide. 
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In compound 1, triflouro phenyl ring is marked 
with yellow color at 3rd position indicates that 
positive contribution (no bulky group is required). 
In compound 3, diflouro phenyl ring attached with 
piperazine is covered with red color at 3rd position 
indicates negative contribution (electron donating 
group is required). In compound 4 the 4 hydroxyl 
ethyl phenyl ring attached with piperazine is marked 
with red color at 3rd position indicates negative 
contribution (that electron donating group is required). 
In compound 6 the bis phenyl ring attached with 
piperazine is marked with red color at different 
position indicates negative contribution (that electron 
donating group is required). In compound 7 the 
2-cyano phenyl ring attached with piperazine is 
marked with green color at 1st and 4th position 
indicates positive contribution (that bulky group is 
required to increase the biological activity). The 
piperazine ring also contains the green color indicates 
positive contribution (requirement of bulky group). 
In compound 8 the 4-cyano phenyl ring attached 
with piperazine is marked with yellow color at 1st 
and 3rd position indicates positive contribution (no 

bulky group is essential to increase the biological 
activity). The piperazine ring also contains the yellow 
color indicates positive contribution (requirement of 
no bulky group). In compound 11 the piperazine is 
marked with yellow color at 1st and 5th position 
indicates positive contribution (that no bulky group 
is required to increase the biological activity). The 
piperazine ring also contains the green color at 2nd 
and 6th indicates positive contribution (necessity 
of bulky group). The amino ketone contains the 
yellow color indicates positive contribution (no bulky 
group attached on specified position). The compound 
7 shows the positive contribution, compound 1, 8 and 
11 indicates moderate contribution and compound 3, 4 
and 6 shows negative contribution (fig. 4) for DPP IV 
inhibitory activity. The spectrum of colour coding on 
the fragment structure presented in the fig. 5.

The present study describes the successful application 
of computational approaches to identify essential 
structural requirements in 3D chemical space for 
the modulation of antidiabetic activity of substituted 
β-amino amide. Applied HQSAR effectively to 
rationalize the 3D space in diverse substituted 
β-amino amide in terms of their steric, electrostatic 
and hydrophobic interaction for their antidiabetics 
activity. The developed models showed good 
statistical significance in internal validation (q2), 
external validation (r2) and performed very well in 
predicting the antidiabetic activity of eight substituted 
β-amino amide in the test set. HQSAR study based 
sets provided the 2D sub-structural requirements 
and showed good statistical significance in internal 
validation (r2) as well as predicting very well the 
antidiabetic activity of the test set compounds. The 
HQSAR models were generated using the different 
fragment size combined with various fragment 
distinct and various hologram lengths as summarized 
in Tables 2 and 3. The model with 4-7 fragments Fig. 4: The compounds 1, 3, 4, 6, 7, 8 and 11 contributing map. 

1 3

4 6

87

11

Fig. 5: The color encoded (A) and structural fragment contribution (B) for activity. 
The green and yellow color (represents positive contribution), white color (indicates intermediate or moderate contribution) while red and 
orange (negative contribution), suggested the structure fragment requirement for enhancing the binding affinity.
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with an r2 value of 0.971 at six components and 
353 hologram lengths was selected. In order to further 
analyse this, the dataset was divided into the training 
and 8 test set as in studies in order to access the 
predictive values of the model. The observed q2 and 
r2 value 0.971 and 0.971 between actual and predicted 
pIC50 of the training and test set, respectively, further 
signified the quality of the model. The predictive 
pIC50 values of the training as well as test set 
molecules based on the HQSAR model generated. 
An attractive property of the QSAR technique is that 
it provides straightforward clues about the individual 
atomic contributions to biological activities through 
the use of different color codes. The piperazine ring 
on 3rd position is marked with red colour indicating 
the necessity of electron donating group and trfluoro 
phenyl ring not required the bulky group at 3rd 
position. The amide moiety contains the yellow colour 
it means that it doesn’t requires the bulky sustituents. 
HQSAR may be useful for designing new substituted 
β-amino amide with potent antidiabetic activity. 
The three structures were designed (R1=(CH2)2C6H5, 
(CH2)3C6H5 and (CH2)4C6H5) on the basis of HQSAR 
showed in the fig 5 with good predicted pIC50.
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