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Xu et al.: Validation of Necroptosis Risk-Scoring Signature in Lung Adenocarcinoma

Lung adenocarcinoma is one of the most common tumors in humans. By exploring the role of necroptosis 
in lung adenocarcinoma, we aimed to gather information which can be used to build a necroptosis-related-
gene-based diagnostic model that can play an auxiliary role in lung adenocarcinoma diagnosis and treatment. 
Necroptosis-related genes were selected from the Kyoto Encyclopedia of genes and genomes database. 
Differentially expressed genes in the tumor group and normal group were identified from The Cancer 
Genome Atlas/Genomic Data Commons database then analyzed by gene ontology, Kyoto Encyclopedia 
of genes and genomes and gene set enrichment analysis. Cox and Lasso regression analyses were used to 
screen out prognosis-related necroptosis-related genes from the differentially expressed genes and establish 
a necroptosis risk-scoring signature. The receiver operating characteristic curves were plotted and patients 
were divided into high-risk and low-risk groups according to the necroptosis risk-scoring signature. Kaplan-
Meier survival curves were drawn and area under the curve, and decision curve analyses were calculated 
to evaluate the performance of the model. Then, internal and external dataset validations were performed. 
A total of 159 necroptosis-related genes were retrieved from the Kyoto Encyclopedia of genes and genomes 
database, 39 of which were differentially expressed in tumor tissues. Four necroptosis-related genes 
(interleukin-33, cytochrome B-245 beta chain, H2A.X variant histone and Readthrough (RNF103-CHMP3)) 
independently correlated with lung adenocarcinoma prognosis were screened by Lasso or Cox regression 
based on which prognostic model was established. The independent prognostic value of this model was 
verified by multivariate Cox regression analysis. In this model, the low-risk group showed significantly longer 
survival time than the high-risk group (p<0.01) and the model showed good predictive performance in both 
the internal and external validation sets. In this study, we explored the potential link between necroptosis and 
lung adenocarcinoma, established a necroptosis gene-based prognostic model and validated the independent 
prognostic value of the model.

Key words: Joint representation learning, necroptosis, lung adenocarcinoma, nomogram, Kyoto Encyclopedia of 
genes and genomes database, gene ontology database

Lung cancer is the main cause of cancer-related 
deaths in China[1]. Lung Adenocarcinoma (LUAD) is 
the most common pathological type of lung cancer, 
accounting for 39.7 % of lung cancer cases[2]. The 
main risk factors for LUAD include second-hand 
smoke, pollution and occupational carcinogens[3], 
and the disease is also associated with hereditary 
susceptibility[4]. Despite great strides in the 
advancement of chemotherapy and targeted therapy 
for LUAD, Overall Survival (OS) is still low for 
most patients, with one of the main reasons for this 
being that most patients are diagnosed at an advanced 
stage. At present, clinically relevant prognostic 
indicators for LUAD include tumor size, metastasis 

and mutation load. However, the tumors are highly 
heterogeneous and there are great differences in 
therapeutic effect and prognosis even among patients 
with the same Tumor-Node-Metastasis (TNM) 
stage. Hence, the above indicators alone have poor 
specificity and cannot be used to accurately predict 
the prognosis of patients[5]. Therefore, we need to 
explore new biomarkers and construct new scoring 
criteria to provide a basis for the individual diagnosis 
and treatment of LUAD. In addition, LUAD cells can 
develop resistance to existing chemotherapy agents 
and targeted drugs in a variety of ways[6], and new 
therapeutic markers and targets are needed to achieve 
better therapeutic effects. Hence, the identification 
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of abnormal genes has become a hot topic in recent 
years and studies of necroptosis are receiving 
increasing attention[7]. In conclusion, exploring the 
role of necroptosis in the pathogenesis of LUAD 
and establishing an improved prognostic model is of 
significance to the early diagnosis and treatment of 
LUAD.

Apoptosis is a common cell death pathway in 
organisms. Traditional chemotherapy drugs inhibit 
tumor growth by inducing apoptosis in tumor cells[8], 
but tumor cells can develop certain drug resistance 
strategies through the disruption of normal apoptosis 
mechanisms. As studies continue to investigate cell 
death mechanisms in-depth, more and more new 
cell death modes have been found; for example, 
Degterev et al.[9] first reported a unique cell death 
mode in vertebrates-necroptosis. Classical apoptosis 
depends on the activation of caspase, when caspase 
is deficient or inhibited, the apoptosis pathway is also 
inhibited, which is one of the bases for drug resistance 
in tumors[10]. However, necroptosis is a caspase-
independent mode of cell death. In necroptosis, the 
phosphorylation-signaling pathway mediated by 
Receptor Interacting Serine/Threonine Kinase 1/3 
(RIPK1/RIPK3) activates the Mixed Lineage Kinase 
Domain Like Pseudokinase (MLKL)/phosphorylated 
MLKL (pMLKL), resulting in cell enlargement, 
organelle swelling, cell collapse after membrane 
perforation and the release of cellular contents. 
Consequently, an immune response is triggered and 
necrotic cells are eliminated by macropinocytotic 
corpuscles. When the classical apoptotic pathway 
is inhibited due to caspase inactivation, necroptosis 
is activated as a substitute. Therefore, it is believed 
that tumor cells that are resistant to apoptosis may 
be sensitive to cell death via necroptosis pathway 
activation[11]. These findings suggest that necroptosis 
and its regulatory mechanisms are potential LUAD 
treatment targets.

Previously, several studies have developed 
prognosis-related models for LUAD. However, few 
studies reported the relationship between necroptosis 
and LUAD, and to date, no prognostic models 
have been developed in this area. In this study, we 
investigated the correlation between necroptosis and 
LUAD using The Cancer Genome Atlas (TCGA) 
and Gene Expression Omnibus (GEO) databases. 
We established a Necroptosis-Related Gene (NRG) 
prognostic signature and examined its clinical value. 
We hope our study results can support the diagnosis 

and treatment of LUAD.

MATERIALS AND METHODS 

Data collection and processing:

NRGs were retrieved from the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database (https://
www.kegg.jp)[12]. Standardized Fragments per 
Kilobase of Transcript per Million Mapped Reads 
(FPKM) Ribonucleic Acid sequencing (RNA-seq) 
data and clinical data, excluding lost-to-follow-up 
patients, were downloaded from TCGA/Genomic 
Data Commons (GDC) database (https://portal.gdc.
cancer.gov/) on October 31, 2021[13]. The dataset 
GSE19188 was downloaded from the GEO database 
for use as a gene validation set. All datasets in the 
present study were from public databases, thus 
ethical approval was not needed.

Differential expression analysis and enrichment 
analysis:

Differentially Expressed NRGs (DENGs) between 
LUAD and normal lung tissues were screened out 
using the “limma” package in the software R-4.0.3 
and the expression profiles were standardized using 
the “edgeR” package. The screening standards 
of Differentially Expressed Genes (DEGs) were 
log2 |fc|>1 and p-value adjusted (padj)<0.05. The 
Grammar of Graphics (GGplot2)[14] and “Pheatmap” 
packages were used to plot the volcano plots and 
heat maps, which were used to visualize the DEGs. 
Subsequently, the “clusterProfiler” and “EnrichPlot” 
packages were utilized for Gene Ontology (GO) 
enrichment analysis, KEGG analysis, Gene Set 
Enrichment Analysis (GSEA) and visualization. 
Then, the phenotypic correlations of the DEGs 
were determined to explore the potential molecular 
mechanisms.

Establishment of necroptosis-related prognostic 
model:

After obtaining DENGs, Least absolute shrinkage and 
selection operator (Lasso) regression analysis was 
used to eliminate collinearity among the independent 
variables to further screen for DENGs and a Lasso 
trajectory chart was plotted[15]. Genes with non-zero 
regression coefficients were subjected to multivariate 
Cox analysis and the final prognostic risk scoring 
model was constructed. The risk score calculation 
formula was as follows: Risk score=Gene expression 
1×Coef1+gene expression 2×Coef2+... +gene 
expression n×Coefn (Coef: Regression coefficient of 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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gene in multivariate Cox regression analysis; n: Total 
number of NRGs correlated with prognosis). The risk 
score for each patient was calculated according to the 
formula and the patients were divided into a high-
risk group and a low-risk group using the median risk 
score. Risk factor graphs and Kaplan-Meier survival 
curves were drawn to analyze and compare the OS 
of the two groups. The “timeROC” package was 
used to plot the time-dependent Receiver Operator 
Characteristic (ROC) curves and the Area Under 
the Curve (AUC) of sample OSs at 1 y, 3 y and 5 y 
was calculated to evaluate the predictive prognostic 
ability of the model. The higher the AUC, the better 
the model performance was. Subsequently, risk score 
and other clinical information, such as age, gender 
and stage, were incorporated into the observation 
indicators. Univariate and multivariate Cox analysis 
of the correlation between each factor and the OS was 
conducted to determine the independent prognostic 
factors of LUAD and a forest plot and nomogram 
were plotted according to the results. Finally, the 
relationship between each clinical parameter and 
the risk score was analyzed. Cox models of TNM, 
nomogram and Necroptosis Risk Scoring Signature 
(NRSS) were constructed and Decision Curve 
Analysis (DCA) for 1 y, 3 y and 5 y survival was 
conducted to evaluate the clinical utility of NRSS[16]. 
Moreover, the actual probability of LUAD patient’s 
survival and the model-predicted probability were 
fitted by drawing calibration diagrams to judge the 
evaluation effect of NRSS on the prediction of actual 
results.

Validation of NRSS:

The LUAD patients were randomly divided into a 
training set (n=263) and a validation set (n=263), and 
the risk score for each patient was calculated using 
the scoring formula. Patients in both the training 
and validation sets were divided into high-risk and 
low-risk groups for internal validation based on the 
median risk scores. A Kaplan-Meier survival curve 
was used to compare the OS between the two groups 
and AUC was used to evaluate the predictive ability 
of the model.

Next, GSE19188 was selected from the GEO 
database as the external verification set. According to 
the above risk-scoring formula, the risk scores of the 
LUAD samples in this verification set were calculated 
and the patients were divided into high and low-risk 
groups. The same method was used to evaluate the 

predictive performance of the prognostic risk model. 
The “survival”, “R-Script Decision Curve Analysis 
for survival data (STDCA)” and “pROC” packages 
were used for this process.

Statistical analysis:

Statistical analyses were performed with R software 
(Version 3.5.1). When the two groups conformed 
to normality but not homogeneity of variance, 
Welch’s t-test was selected to compare the groups. 
When the two groups did not conform to normality, 
the Wilcoxon-Mann-Whitney test was used for 
comparison. Survival curves were generated using 
the Kaplan-Meier method and compared by log-
rank test. Multivariate analysis was performed using 
the Cox proportional hazard model. All statistical 
tests were bilateral, with p<0.05 being statistically 
significant.

RESULTS AND DISCUSSION

A total of 159 NRGs were collected from the KEGG 
database and the messenger RNA (mRNA) expression 
data of 535 LUAD tissues and 59 normal tissues were 
obtained from the TCGA database (fig. 1A-fig. 1E). 
Using log2|fc|>1 and padj<0.01 as criteria, 5382 DEGs 
were screened out. Among the 5382 DEGs, 39 DENGs 
were found (fig. 1A), including 26 up-regulated genes 
(Calcium/Calmodulin Dependent Protein Kinase II Beta 
(CAMK2B), Tumour Necrosis Factor (TNF) Receptor 
Associated Factor (TRAF) 5, Janus Kinase 3 (JAK3), 
Interferon Gamma (IFNG), Phospholipase A2 Group 
IVA (PLA2G4A), Z-DNA Binding Protein 1 (ZBP1), 
TRAF2, PLA2G4D, Charged Multivesicular Body 
Protein 4C (CHMP4C), Interferon Beta 1 (IFNB1), H2A 
Clustered Histone (H2AC) 6, H2A.W Histone (H2AW), 
H2AC20, H2AC21, H2A.X Variant Histone (H2AX), 
H2AC13, H2AC11, H2AC7, H2AC18, RNF103-
CHMP3 Readthrough (RNF103-CHMP3), H2AC12, 
H2AC14, H2AC16, H2AC8, H2AC4, H2AC17) and 
13 down-regulated genes (Glycogen Phosphorylase, 
Muscle associated (PYGM), CAMK2A, Mitogen-
Activated Protein Kinase 10 (MAPK10), Interleukin 
(IL) 1 Alpha (IL1A), TNF Alpha Induced Protein 3 
(TNFAIP3), IL1B, Toll Like Receptor 4 (TLR4), IL-
33, IFNA21, IFNA5, Arachidonate 15-Lipoxygenase 
(ALOX15), Cytochrome B-245 Beta chain (CYBB), 
PLA2G4F). Grouping boxplots were plotted to reveal 
differences in the expression of the 39 DENGs between 
tumor tissues and adjacent tissues (fig. 1B). A volcano 
plot was generated for 5382 DEGs (fig. 1C).
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Functional enrichment analysis was performed on 
DEGs to provide an understanding of their biological 
roles. The most enriched terms were necroptosis, the 
cyclic Adenosine Monophosphate (cAMP) signaling 
pathway, cell cycle and the IL-17 signaling pathway. In 
these enrichment analyses, the Z-scores were combined 
to evaluate the role of DEGs in these pathways (fig. 
2). In addition, in the GSEA analysis, the genes were 
significantly enriched in phenotypes such as TLR4, 
regulation of Tumor Protein P53 (TP53) activity and 
reactome caspase activation via the extrinsic apoptotic 
signaling pathway (fig. 3). Thus, these findings revealed 
a link between the occurrence of cancer and various 
genes that regulate the way cells die, including those 
involved in necroptosis.

Construction and prognostic evaluation of NRSS was 
shown below. Univariate Cox regression analysis was 
performed on 39 DENGs and seven NRGs (PYGM, 
TLR4, IL-33, CHMP4C, CYBB, H2AX, RNF103-
CHMP3) were found to be significantly correlated 
with prognosis. Lasso regression analysis was carried 
out for the above seven NRGs to exclude collinear 
interference and variable trajectory charts were 
generated (fig. 1D and fig. 1E). Based on the charts, the 
optimal penalty coefficient of the model was confirmed 
to be 4 and four NRGs were screened out, namely 

IL-33, CYBB, H2AX and RNF103-CHMP3. These 
genes were confirmed to be independent prognostic 
factors of LUAD by multivariate Cox regression 
analysis and their expression levels in tumor tissues 
and normal tissues were mapped (fig. 4A). Combined 
with the corresponding Coef, it was confirmed 
that NRSS=(−0.056×expression level of IL-33)−
(0.057×expression level of CYBB)+(0.270×expression 
level of H2AX)+(0.651×expression level of RNF103-
CHMP3). The risk score of each patient was calculated 
and the median risk value was used as the cut-off point to 
divide the patients into a high-risk score group (n=263) 
and low-risk score group (n=263). The heat map, risk 
score plot and survival outcome plot based on risk score 
were generated (fig. 4B and fig. 4C). It was clear that, 
as the score increased, there was a significant rise in 
overall mortality rate. To evaluate the performance of 
the NRSS, Kaplan-Meier analysis was performed on 
the OS of both groups. The OS of the high-risk group 
was significantly lower than that of the low-risk group 
(Hazard Ratio (HR)=1.77, 95 % Confidence Interval 
(CI)=1.32-2.38, p<0.001, fig. 5A). The time-dependent 
ROC curves are shown in fig. 5B. The AUC values for 
1 y, 3 y and 5 y survival were 0.721, 0.682 and 0.709 
respectively, indicating the robustness and accuracy of 
the model in predicting the prognosis of patients.

Fig. 1: The DENGs, (A) Venn diagram of the intersection of DEGs and necroptosis genes; (B) The boxplot of the differentially 
expressed DENGs, (   ) Normal; (   ) Tumour; (C) Volcano plot of 5382 DEGs; (D) Cross-validation for tuning parameter selection 
in the Lasso model and (E) Lasso coefficient profiles
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Fig. 3: Gene set enrichment analysis, (A) GSEA validated enhanced activity of TLR4 signaling; (B) GSEA validated enhanced activ-
ity of TLR4 cascade; (C) GSEA validated enhanced activity of TP53 activity and (D) GSEA validated enhanced activity of reactome 
caspase activation via the extrinsic apoptotic signaling pathway

Fig. 2: DEGs expressed in normal and tumor groups of LUAD are involved in necroptosis-related pathways, (A) The significant 
terms of KEGG function enrichment; (B) The significant terms of GO analysis; (C) Enrichment string diagrams of NRGs and (D) 
The bubble diagram shows the scatter map of the logFC of the specified gene. Ontology, (     ) BP; (     ) CC; (     ) MF; (     ) KEGG, 
Counts, (     ) 5; (     ) 60; (      ) 115



www.ijpsonline.com

Special Issue 2, 2022Indian Journal of Pharmaceutical Sciences168

The results of univariate and multivariate Cox 
regression analyses showed there were significant 
differences in risk score (fig. 5C), indicating that risk 
score had an independent prognostic value and could 
be used as an independent prognostic factor for LUAD 
patients. In addition, the T and N tumor stages may also 
be independent prognostic factors for LUAD patients, 
thus we constructed a necroptosis-related nomogram 
to predict the 1 y, 3 y and 5 y survival rates of the 
patients. The C-indexes for the established nomogram, 
NRSS and TNM-stage were 0.678, 0.647 and 0.618, 
respectively (Table 1). Both the DCA results for 1 
y, 3 y and 5 y OS (fig. 6A-fig. 6C) and the C-index 
showed that NRSS had better predictive power than 
traditional TNM staging. However, the nomogram, 
which combined multiple clinical information, had the 
most robust predictive accuracy. The calibration curves 
of the nomogram, which was used to predict the 1 y, 3 
y and 5 y survival, also showed that the actual curve 
closely followed the ideal curve, demonstrating its high 
predictive accuracy (fig. 6D).

The TCGA-LUAD dataset was used to further investigate 
whether the model could predict the prognosis of 
patients with different clinical characteristics, including 
tumor size, lymph node metastasis and tumor stage. 
According to the results (fig. 7), the risk score for stage 
III/IV was higher than that for stage I/II (p=5.3e-05); 
the score for patients with N1/2/3 was higher than that 

for patients with N0 (p=2.6e-05) and the risk score for 
M1 patients was higher than that for M0 patients, with a 
significant difference between the two groups (p=0.03).

To verify the applicability of prognostic features to the 
OS, LUAD patients were divided into a training set 
(n=263) and a validation set (n=263) using the random 
number method. The risk score of each patient was 
calculated according to the formula and patients were 
divided into high-risk and low-risk groups according to 
the median value of the risk score (fig. 8A- fig. 8F). 
Consistent with the results of the entire dataset, patients 
with high risk scores had lower OS than patients with 
low risk scores in both groups (fig. 8A and fig. 8B). In 
the training set, the AUC of the 1 y, 3 y and 5 y survival 
were 0.636, 0.632 and 0.631, respectively (fig. 8D). In 
the validation set, the AUC of 1 y, 3 y and 5 y were 
0.636, 0.595 and 0.565, respectively (fig. 8E).

45 patients with LUAD in the GSE19188 dataset 
from the GEO database were selected as the external 
validation set. The Kaplan-Meier survival curve for 
the LUAD patients showed that those with high risk 
scores had lower OS than patients with low risk scores, 
with significant differences (p=0.019). The AUC values 
for the 1 y, 3 y and 5 y survival ranged from 0.624 to 
0.785, indicating that the NRSS had good predictive 
performance for the external validation set (fig. 8C and 
fig. 8F).

Fig. 4: Establishment of NRSS signature, (A) The heat map of 4 NRGs expression in tumor and normal tissue, (   ) Normal; (   ) Tu-
mor; (B) The heat map of 4 NRGs in patients with LUAD and (C) The risk score, survival status of 4 NRGs in patients with LUAD, 
Risk group, (   ) Low; (   ) High; Status, (   ) 0; (   ) 1

Fig. 5: Analysis of NRGs as an independent prognostic factor, (A) Kaplan-Meier survival curves show OS and 95 % CI for high-risk 
and low-risk patients with LUAD based on the NRSS, (     ) Low; (     ) High; (B) 1 y, 3 y and 5 y ROC and AUC=0.721, 0.682 and 
0.709, respectively, (    ) 1 y (AUC=0.721);  (    ) 3 y (AUC=0.682); (    ) 6 y (AUC=0.709) and (C) Prognostic nomogram for predicting 
the survival of patients with LUAD
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Fig. 7: The correlation between the NRSS and clinic-pathological variables, (A) The relationships between NRSS and stage 
(p=5.3e-0.5); (B) The relationships between NRSS and T stage (p=0.2); (C) The relationships between NRSS and N stage (p=2.6e-05) 
and (D) The relationships between NRSS and M stage (p=0.03)

TABLE 1: THE C-INDEX OF TNM-STAGE, NRSS AND NOMOGRAM
Cohort Variable C-index (95 % CI)

LUAD TNM-stage 0.618 (0.594-0.642)

 NRSS 0.647 (0.623-0.670)

 Nomogram 0.678 (0.654-0.702)

Fig. 6: Performance of NRSS, (A-C) Decision curve analysis of this nomogram. Including the TNM stage, risk score model, the 
nomogram shows that advanced T/N/M grade, stage, risk score and partially were better than stage for predicting survival, (    ) 
TNM; (    ) NRSS; (    ) Nomogram; (    ) All positive; (    ) All negative and (D) Calibration curves of the nomogram for predicting 
survival at 1 y, 3 y and 5 y. If the actual curve is closer to the ideal curve, the nomogram prediction accuracy is higher, (    ) 1 y; (    ) 
3 y; (    ) 5 y; (    ) Ideal line
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Lung cancer is the leading cause of cancer-related death 
worldwide, with a 5 y survival rate of 15 %[17]. Among 
the various pathological forms, LUAD is the most 
common, accounting for 39.7 % of lung cancer cases 
and some patients display genetic susceptibility to the 
form[4,18]. LUAD has low malignancy and develops 
slowly, but the OS rate of most patients remains low. 
There are two main reasons for this situation. The first 
is the existence of micrometastasis, i.e., hematogenous 
and lymphatic metastases can appear when lung lesions 
are small, resulting in the loss of surgical opportunity[19]. 
The second reason involves gene mutations and drug-
resistance events. With the discovery of driving genes 
such as EGFR, the development and application of 
drugs for patients with EGFR-mutant LUAD in recent 
years[20] has improved their prognosis to a certain 
extent. However, in the course of applying such 
targeted drug therapy in the clinical arena, more and 
more cases of drug resistance due to gene mutation 
have been reported[21]. Therefore, new biomarkers to 
assess the prognosis and survival of LUAD patients and 

to develop new antitumor drugs should be explored.

Necroptosis, which is characterized by both necrosis and 
apoptosis, is a type of cell death that was first described 
in recent years[9] and is jointly regulated by RIPK1, 
RIPK3 and MLKL[22]. Necroptosis has been shown 
to be a double-edged sword in cancer progression[23] 
depending on the type of tumor and its stage of 
development. For example, due to the low expression of 
RIPK3 and MLKL, most tumor cells exhibit resistance 
to necroptosis, which facilitates tumor growth[24,25]. 
On the other hand, tumor cells can activate death 
receptors 6 to induce endothelial necroptosis[26], which 
promotes tumor cell extravasation and metastasis[27,28]. 
Therefore, the relationship between necroptosis and 
LUAD pathogenesis is of great significance to LUAD 
treatment.

In this study, NRGs were collected from the KEGG 
database and DEGs were screened out using LUAD 
RNA-seq data and survival information from TCGA. 
GO and KEGG enrichment analyses indicated that 

Fig. 8: Validation of NRSS with training set, validation set and GEO database, (A) Kaplan-Meier survival curves show OS and 95 % 
CI for high and low-risk patients with training set; (B) Kaplan-Meier survival curves show OS and 95 % CI for high and low-risk 
patients with validation set; (C) Kaplan-Meier survival curves show OS and 95 % CI for high and low-risk patients with GSE19188, 
(     ) Low; (     ) High; (D) 1 y, 3 y and 5 y ROC and AUC=0.636, 0.632 and 0.631, respectively, (     ) 1 y (AUC=0.636); (     ) 3 y 
(AUC=0.632);  (     ) 5 y (AUC=0.631); (E) 1 y, 3 y and 5 y ROC and AUC=0.636, 0.595 and 0.565, respectively, (     ) 1 y (AUC=0.636); 
(     ) 3 y (AUC=0.595);  (     ) 5 y (AUC=0.565) and (F) 1 y, 3 y and 5 y ROC and AUC=0.624, 0.785 and 0.785, respectively, (     ) 1 y 
(AUC=0.624); (     ) 3 y (AUC=0.785);  (     ) 5 y (AUC=0.785)
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these genes were mainly enriched in signaling pathways 
that regulate the cell cycle, necroptosis, cAMP and IL-
17. GSEA revealed that these genes were significantly 
enriched in phenotypes that included TLR4, regulation 
of TP53 activity and reactome caspase activation via 
the extrinsic apoptotic signaling pathway. In the Cox 
and Lasso regression analyses, four NRGs (IL-33, 
CYBB, H2AX, RNF103-CHMP3) were screened out 
and the NRSS was constructed.

IL-33 expression has been negatively correlated with 
lung cancer progression[29]. In LUAD, increased IL-
33 increases the number of Dendritic Cells (DCs)[30]. 
By increasing the expression of DC-function-related 
genes, including antigen-presenting genes (Human 
Leukocyte Antigen (HLA)-Heterodimer consisting of 
an Alpha chain (DMA), HLA-Heterodimer consisting 
of Beta chain (DMB) and Cluster of Differentiation 
74 (CD74)) and genes for cytokines (IL-1β, IL-6 and 
TNF), IL-33 induces DC maturation and regulates 
their function, mediating the immune regulation of 
LUAD and inhibiting its progression[31]. It is said that 
the IL-33-targeted drug REGN3500 (SAR440340) 
has completed a phase II clinical trial. It is hoped 
that the inhibition of IL-33 can block type 1 and type 
2 inflammation, thus achieving the goal of treating 
asthma. However, according to our findings, blocking 
IL-33 expression may lead to necroptosis inhibition 
and increase lung cancer risk and severity, which 
should be a concern in the development of such drugs. 
CYBB is a major component of the oxidase system of 
phagocytes and participates in the killing of various 
immune cells and previous studies have demonstrated 
a negative correlation between CYBB expression 
levels and LUAD prognosis[32], CYBB deficiency can 
lead to chronic granulomatosis, in which neutrophils 
reduce Nicotinamide Adenine Dinucleotide Phosphate 
(NADPH) oxidase activity, at which point neutrophils 
are able to engulf bacteria but cannot kill them in 
phagocytic vacuoles. We hypothesize that this situation 
may also occur in LUAD, resulting in reduced clearance 
of tumor cells[33]. The phospho-histone H2A.X (Ser139), 
can induce necroptosis by stimulation with apoptosis-
inducing factor[34] and Ubiquitin-Specific Peptidase 22 
(USP22) can induce the cisplatin resistance in LUAD 
by regulating H2AX-mediated DNA-damage repair[35]. 
The protein encoded by the CHMP3 gene was found 
to be up-regulated in non-small cell lung cancer and 
has neuroendocrine differentiation, which is associated 
with poor prognosis[36]. These genes should also be the 
focus of future drug development.

Kaplan-Meier analysis based on the NRSS proved that 
patients with high risk scores had a worse prognosis 
than those with low risk scores. Time-dependent ROC 
proved that the model had good sensitivity and specificity 
for the prognostic prediction of LUAD, which was 
verified in the internal datasets and the external dataset 
GSE19188. At the same time, univariate and multivariate 
Cox regression analyses were performed on the risk 
scores and other clinical predictors, demonstrating 
that the risk score had independent prognostic value 
and can be used as an independent prognostic factor 
for LUAD patients. TNM stage is an internationally 
recognized predictor of clinical prognosis. In the 
current study, NRSS had more advantages than TNM 
stage from the perspective of DCA analysis. However, 
the model is still in the preliminary establishment stage 
and this was a retrospective study with a small sample 
size. Thus, large-scale prospective clinical trial data 
are needed to verify whether the predictive ability of 
the signature is better than that of TNM stage. The 
results of the correlation analysis between risk score 
and clinical features suggested that risk score was 
closely related to N stage, M stage and prognosis, but 
the causal relationship among them needs to be further 
investigated.

Compared with previous studies, for example[37], our 
screening criteria are different. We screen genes based 
on the relationship between necroptosis and LUAD 
to establish a more distinctive prognostic model, 
which facilitates more individualized assessment and 
treatment of patients. In addition, we constructed the 
nomograph considering clinical factors such as patients 
age, gender, smoking status and tumor status, so as to 
more comprehensively evaluate the prognostic survival 
probability of LUAD patients, which was verified 
externally, making the model more accurate.

In conclusion, an NRSS for LUAD was constructed 
in this study based on NRGs through Lasso and Cox 
regression analyses and the model was verified by 
DCA. Compared with the ROC curve, which evaluated 
the model using sensitivity and specificity, DCA is 
considered to provide more information on a models 
clinical utility. This model was found to be relatively 
reliable and had an independent prognostic value and 
clinical relevance and can provide a reference for 
the individualized diagnosis and treatment of LUAD 
patients. No prediction model has been constructed 
based on NRGs in similar studies and many NRGs can 
regulate the occurrence and development of tumors. 
Evaluating the expression of NRGs in tumor tissues 
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has great prospects for predicting survival prognosis 
and providing new therapeutic targets. This study firstly 
filled the gap in our knowledge of NRSS in LUAD to 
achieve a more accurate prognostic assessment for 
LUAD patients and provide an important reference for 
personalized treatment. Secondly, this study verified 
the reliability of the constructed risk model using 
internal and external datasets. The predictive efficiency 
validation (mean AUC>0.600) of the model suggests 
that it has moderate predictive performance in other 
independent datasets. Unfortunately, there were some 
limitations to our study. First, all data analyzed in 
this study came from public databases and large-scale 
clinical trials are still needed to evaluate the predictive 
power of the risk model. Second, the risk-related genes 
used for modeling in this study have not been verified 
via in vivo and in vitro experiments.
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