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Cordyceps sinensis is a widely utilized medicinal substance in clinical practice, notably recognized for its 
applications in various cancer treatments. Although several studies have demonstrated its therapeutic effects 
on liver cancer, a comprehensive analysis of the underlying molecular mechanisms is still lacking. In this study, 
we systematically gathered 197 components and identified 343 action targets of Cordyceps from traditional 
Chinese medicine systems pharmacology and high-throughput experiment- and reference-guided databases, 
as well as 1482 therapeutic targets associated with hepatocellular carcinoma from various sources, including 
Online Mendelian Inheritance in Man, DrugBank and other databases. Utilizing this extensive dataset, we 
conducted a comprehensive analysis that revealed tumor necrosis factor, cysteine-aspartic acid protease 3, 
B-cell lymphoma 2, interleukin 6, vascular endothelial growth factor A and peroxisome proliferator-activated 
receptor as the central targets responsible for the efficacy of Cordyceps sinensis in liver cancer therapy. Further 
enrichment analysis unveiled potential mechanisms of Cordyceps action in liver cancer treatment, highlighting 
the tumor necrosis factor-nuclear factor kappa B signalling pathway and wingless-related integration site/
catenin beta 1 signalling pathway as areas warranting further exploration. Finally, we utilized molecular 
docking to visualize the binding models of the relevant components and core targets. In summary, our study 
systematically and effectively analysed the potential active ingredients, action targets and relevant pathways 
associated with Cordyceps sinensis in the treatment of hepatocellular carcinoma. These findings shed light on 
the underlying mechanisms of action of Cordyceps sinensis, thus establishing a robust theoretical foundation 
for future experimental investigations.
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Liver cancer stands as one of the most prevalent 
malignant neoplasms globally, encompassing 
Hepatocellular Carcinoma (HCC), Intrahepatic 
Cholangiocarcinoma (ICC), and combined 
hepatocellular-cholangiocarcinoma. Among these, 
HCC constitutes 75 %-85 % of all primary liver 
cancer, while ICC accounting for 10 %-15 %[1]. 
Across the world, the incidence of liver cancer 
remains notably elevated in Asian nations and 
Pacific islands, particularly within developing 
countries[2,3].

In China, nearly 500 000 new cases of primary 
liver cancer are diagnosed annually, constituting 
around 50 % of all newly reported instances of 
primary liver cancer globally. This heightened 
occurrence primarily stems from deficient early 

diagnosis and management of Hepatitis B Virus 
(HBV) infection[4,5]. Concurrently, the prodromal 
manifestations of liver cancer often evade 
attention, resulting in detections predominantly 
manifesting in the intermediate to advanced stages. 
Present therapeutic modalities are considerably 
constrained, profoundly compromising the quality 
of patients life and exacerbating their burdens[2].

Cordyceps sinensis, documented as far back in the 
early 15th century, is a widely employed medicinal 
substance in clinical practice, particularly notable 
for its applications in various tumor treatments. It 
emerges as a complex entity formed through the 
symbiotic relationship between the Cordyceps 
fungus and the remains of its host insect larva. 
Relevant research has indicated that it actively 
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engages in intricate signalling pathways, both 
directly and indirectly, thereby exerting diverse 
pharmacological effects such as anti-infective, 
antioxidant, immunoregulatory and anticancer 
properties[6]. There are also studies indicating that 
Cordyceps sinensis exhibits protective effects 
against chemical-induced liver injury, immune-
mediated liver damage, as well as alcoholic and 
non-alcoholic liver injuries.

Significantly, Cordyceps sinensis exhibits a clearly 
defined anticancer effect. Research conducted 
by Lee et al. has unveiled that Cordyceps is 
capable of enhancing the sensitivity of liver 
cancer human hepatoma cell line (Hep3B) to 
Tumor Necrosis Factor (TNF)-Related Apoptosis-
Inducing Ligand (TRAIL) by modulating the c-Jun 
N-terminal Kinase (JNK) signalling pathway, 
thereby inducing apoptosis in liver cancer cells[7]. 
Research discovered that Cordyceps sinensis also 
exhibited inhibitory effects on the production of 
nitric oxide and Reactive Oxygen Species (ROS). 
Additionally, it led to an elevation in mitochondrial 
membrane potential, Superoxide Dismutase (SOD) 
and catalase levels, while concurrently decreasing 

the content of Glutathione (GSH)[8]. Furthermore, 
investigations conducted by Zhang et al. have 
demonstrated the ability of Cordyceps to augment 
the responsiveness of the immune system toward 
tumor cells, thereby significantly inhibiting the 
growth of tumours within Hepatoma 22 (H-22) 
tumor-bearing mice[9,10].

However, a comprehensive systematic analysis of 
Cordyceps sinensis in the context of liver cancer 
treatment remains lacking. Network pharmacology 
is a method to analyse the roles of drug components 
and their target interactions in disease therapeutics. 
It facilitates the systematic assessment of how drugs 
exert their therapeutic effects through intricate 
signalling pathways, making it particularly suitable 
for studies involving multiple components in 
disease treatment. Such investigations hold pivotal 
significance in unravelling the mechanisms of 
action of Traditional Chinese Medicine (TCM)[11]. 
Consequently, this study aims to employ network 
pharmacology method combined with molecular 
docking to systematically reveal the underlying 
mechanism of Cordyceps sinensis in treating liver 
cancer (fig. 1).

Fig. 1: Flow chart 
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MATERIALS AND METHODS

Potential targets of Cordyceps sinensis:

The ingredients and targets of Cordyceps 
sinensis were sourced from the TCM Systems 
Pharmacology (TCMSP)[12] and High-throughput 
Experiment- and Reference-guided database of 
TCM (HERB)[13]. The search keyword used was 
“Dong Chong Xia Cao”. In TCMSP, the selection 
criteria included an Oral Bioavailability (OB) rate 
>30 % and a drug-likeness score exceeding 0.18[14]. 
Conversely, in the HERB database, all ingredients 
and targets were included as they were derived 
from previously validated research studies.

Compilation of therapeutic targets for liver cancer:

Several databases like Online Mendelian Inheritance 
in Man (OMIM)[15], DrugBank[16], MalaCards[17], 
GeneCards[18], DisGeNET[19] and Therapeutic 
Target Database (TTD)[20] offer contemporary 
insights into human genes, granting unhindered 
access to pertinent information regarding targets 
for established diseases. In this study, liver cancer 
serves as the primary search term, employed to 
retrieve pertinent targets from the aforementioned 
databases. The gene sets characterized by 
differential expression, along with genes obtained 
from each database, are amalgamated, purged of 
redundancies, and subsequently categorized as 
genes associated with liver cancer.

Exploration of interrelation networks and core 
modules:

Protein-Protein Interaction (PPI) stands as a 
pivotal facet governing the interactions between 
proteins, with central modules offering elucidation 
into crucial functional units within PPI networks, 
thereby aiding the identification of protein 
complexes and novel pathways. In this study, the 
PPI network was scrutinized via the Search Tool 
for the Retrieval of Interacting Genes (STRING) 
platform for online analysis. Subsequently, 
the outcomes were imported into Cytoscape 
(version 3.10.0)[18], and the CytoNCA plugin was 
employed to meticulously dissect and appraise the 
intricacies of the PPI network[19]. Simultaneously, 
in order to further ascertain the core genes, 
Variant Election (VarElect) was also harnessed 
to analyze the correlation between targets and 
diseases. Furthermore, Molecular Complex 

Detection (MCODE) was employed to delve into 
the identification of core modules.

Enrichment analysis:

Utilizing Gene Ontology (GO) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
empowers the systematic scrutiny of data and 
the potential for unearthing novel insights[21]. 
Therefore, within the comprehensive exploration 
of the therapeutic mechanism of Cordyceps 
sinensis concerning liver cancer, we engaged in 
meticulous GO and KEGG analysis concerning 
the potential targets and functional modules. 
By uploading the prospective targets onto 
Metascape[21], we conducted a rigorous GO analysis 
encompassing biological processes, cellular 
components, molecular functions and KEGG 
pathway enrichment. Significance was accorded 
to elements bearing a value of p<0.01, denoting 
pronounced enrichment.

Molecular docking:

In the context of this study, the application of 
molecular docking was instrumental in evaluating 
the interplay between Cordyceps sinensis and the 
pivotal targets related to liver cancer. At first, 
the ligand structures of each ingredient were 
downloaded from PubChem. Subsequently, the 
corresponding structures of hub targets were 
meticulously obtained from the Protein Data Bank 
(PDB) database[22]. The process of molecular 
docking will be orchestrated through the utilization 
of AutoDock[23] in conjunction with (PyMOL)[24].

RESULTS AND DISCUSSION
Using “Dong Chong Xia Cao” as the pivotal 
keyword, a comprehensive search was conducted 
within the TCMSP and HERB databases. 
Following meticulous curation and deduplication, 
a cumulative compilation of 197 ingredients 
and 343 targets was assembled. Simultaneously, 
employing “liver cancer” as the primary search 
term, research across the OMIM, DrugBank, 
MalaCards, GeneCards, DisGeNET, and TTD 
databases recruited 508, 229, 50, 434, 1186, and 
75 liver cancer-related targets respectively. Upon 
elimination of duplicates, a total of 1482 targets 
pertinent to liver cancer therapy were obtained.

Finally, the intersections between two sets in 
a total of 40 targets were defined as potential 
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Cordyceps sinensis was involved in regulating 
pathways like hepatitis B, cancer, Advanced 
Glycation Endproducts-Receptor for Advanced 
Glycation Endproducts (AGE-RAGE) signaling 
pathway, non-alcoholic fatty liver disease, hepatitis 
C, alcoholic liver disease, and IL-17 signaling 
pathway, Nucleotide-binding Oligomerization 
Domain (NOD)-like receptor signaling pathway, 
and TNF signaling pathway (fig. 6).

We established HERB-ingredient-core target-
disease network (fig. 7) by integrating the 
effective ingredients of Cordyceps sinensis with 
the highly associated core targets in liver cancer. 
This network consists by 18 nodes and 26 edges, 
succinctly encapsulating the intricate relationships 
between the key ingredients and core targets of our 
analysis.

To validate our findings, we conducted molecular 
docking to visualize the binding method of key 
ingredients and core targets (fig. 8). Besides, in all 
molecular docking models, stable hydrogen bonds 
were formed, and the strength of their binding 
energies is illustrated in Table 1.

therapy targets. As shown in fig. 2, we conducted 
an analysis of the interactions among these 40 
targets. Based on their degree values, we identified 
TNF, Caspase 3 (CASP3), B-Cell Lymphoma 2 
(BCL2), Interleukin-6 (IL-6), Vascular Endothelial 
Growth Factor-A (VEGF-A), and Prostaglandin-
endoperoxide Synthase 2 (PTGS2) as central targets 
within this interaction network. Furthermore, 
the exploration revealed a highly interconnected 
functional module (fig. 3). In addition, an analysis 
of the relevance between targets and disease 
treatment was conducted, unveiling that among 
them, 32 targets are directly implicated in disease 
prognosis, while rest of the targets are indirectly 
associated with disease prognosis. Notably, TNF, 
CASP3, BCL2, IL6, VEGF-A, and other targets 
exhibited the highest degrees of correlation (fig. 
4).

In our study, we continued with an enrichment 
analysis to explore the main pathways involved in 
the treatment of liver cancer using Cordyceps (fig. 
5). Our analysis of biological processes revealed 
a strong focus on pathways related to cellular 
apoptosis. KEGG pathway analysis showed that 

Fig. 2: The PPI network of potential targets
Note: The degree value represents the level of involvement of a target within the network; a higher degree signifies greater participation and a more 
significant role or impact of the target
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Fig. 3: Functional modules extracted from the PPI network

Fig. 4: Results of the association degree between targets and diseases
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Fig. 5: Results of enrichment analysis, (A): GO biological cellular components; (B): KEGG pathway; (C): GO biological processes and (D): GO 
molecular functions
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Fig. 8: The molecular docking results, (A): TNF-caffeine; (B): PPARG-uralene; (C): IL-6-caffeine; (D): CASP3-beta-sitosterol and (E): BCL2-be-
ta-sitosterol

Fig. 7: HERB-ingredient-core target-disease network
Note: (  ): Cordyceps sinesis; (  ): Ingredients; (  ): Targets and (  ): Liver cancer
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In various studies, the decline of BCL2 due to 
various reasons has shown to promote apoptosis 
in liver cancer cells[26,27]. Certain research findings 
concerning Peroxisome Proliferator-Activated 
Receptor Gamma (PPARG) suggests that its 
upregulation can activate the Wingless-related 
integration site/Catenin Beta-1 (WNT/CTNNB1) 
signaling pathway, contributing to the occurrence 
and progression of liver cancer[28,29].

IL-6 is a pleiotropic cytokine with a four-helix 
bundle structure that plays multiple roles in the 
body. Since its discovery, it has been recognized as 
a participant in the regulation of various pathways, 
including inflammation and immunity. Studies 
have indicated that the activation of IL-6 triggers 
the activation of the IL-6/Signal Transducer and 
Activator of Transcription 3 (STAT3) signaling 
pathway. Conversely, anti-IL-6 therapy has an 
inhibitory effect on this pathway, revealing a novel 
mechanism in macrophage polarization regulation 
with significant potential for future liver cancer 
treatment[30]. A comprehensive review underscores 
the vital role of IL-6 in maintaining hepatocellular 
homeostasis. Sustained activation of the IL-6 
signaling pathway can be detrimental to the liver 
and may ultimately lead to the development of 
hepatic tumors[31]. 

VEGF-A, is conventionally known for its roles in 
inducing endothelial cell proliferation, promoting 

The research conducted by Chen et al. indicates 
that the subunits of TNF brings changes in the 
microenvironment, inducing the generation of 
an inflammatory microenvironment by Allograft 
Inflammatory Factor 1 (AIF1)+Colony Stimulating 
Factor 1 Receptor (CSF1R)+Mesenchymal Stem 
Cells (MSCs) and promoting the onset of liver 
cancer[21]. Concurrently, other studies suggest 
that the regulation of the TNF-Nuclear Factor 
kappa B (NFκB) signaling pathway is crucial 
for compensatory proliferation of liver cells, 
with excessive TNF expression diminishing this 
compensatory response, thereby fostering the 
development of HCC[22]. Research conducted 
in mice demonstrates that by targeting a pivotal 
component of the TNF-mediated NFκB signaling 
pathway, tumor growth is decelerated, highlighting 
TNF as a promotive factor in liver cancer, with the 
NFκB signaling pathway being one of its essential 
routes[23]. Based on a review of analogous studies, 
anti-TNF treatment stands as a promising avenue 
in the advancement of liver cancer therapy[24]. 
CASP3 has emerged as a prominent target in recent 
liver cancer-related investigations. Research has 
unveiled that CASP3 cleaves Sterol Regulatory 
Element-Binding Protein 2 (SREBP2) in the 
endoplasmic reticulum, facilitating cholesterol 
biosynthesis and leading to resistance against anti-
liver cancer treatment by triggering the activation 
of the sonic hedgehog signaling pathway[25]. 

Protein Gene name         Ligands Pubchem ID Binding energy

Caspase-3 CASP3 Arachidonic acid 444899 -5.6

Caspase-3 CASP3 Beta-sitosterol 222284 -7.3

Caspase-3 CASP3 Berberine 2353 -6.8

Caspase-3 CASP3 Caffeine 2519 -5.1

Caspase-3 CASP3 Higenamine 114840 -6.8

Apoptosis regulator Bcl-2 BCL2 Beta-sitosterol 222284 -6.4

Apoptosis regulator Bcl-2 BCL2 Palmitic acid 985 -4.4

Tumor necrosis factor TNF Caffeine 2519 -5.6

Tumor necrosis factor TNF Cinnamaldehyde 637511 -5.3

Tumor necrosis factor TNF Palmitic acid 985 -4.2

Interleukin-6 IL-6 Caffeine 2519 -5

Peroxisome proliferator-activated receptor gamma PPARG Crachidonic acid 444899 -5.1

Peroxisome proliferator-activated receptor gamma PPARG Cordycepin 6303 -6.3

Peroxisome proliferator-activated receptor gamma PPARG Uralene 192409 -7.3

Note: Binding energy is a crucial parameter in molecular docking, evaluating the strength of interaction between a receptor and a 
ligand. A lower value indicates a tighter binding affinity

TABLE 1: THE RESULTS OF BINDING ENERGY OF EACH MOLECULAR DOCKING
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