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Dai et al.: Analysis in Immune Infiltration and Prognosis of Oral Squamous Cell Carcinoma

The pivotal role of cuproptosis in the beginning and progression of various cancers is evident. Yet, 
the influence of cuproptosis-related genes on oral squamous cell carcinoma has not been thoroughly 
explored. In the present study, we determine distinct oral squamous cell carcinoma classifications and 
formulate a new prognostic indicator for oral squamous cell carcinoma. Transcriptomic data and patient 
outcomes were gathered from the cancer genome atlas repository and then 12 cuproptosis-related genes 
were identified and analyzed. Thereafter, a least absolute shrinkage and selection operator-based risk 
score signature involving 7 cuproptosis-related genes was constructed. All patients were classified into 
high- and low-risk groups, followed by analyses of the immune landscape and sensitivity to different 
therapies in different groups. In addition, column line graphs were plotted to predict outcomes based on 
different clinic pathological features. Based on the identified 12 cuproptosis-related genes, 2 subtypes of 
cuproptosis were identified. Patients in the high-risk group had advanced clinical stages and worse overall 
survival. Furthermore, the immune response and function were significantly suppressed in patients of 
the high-risk group, which may be an important contributor to their poor prognosis. Oral squamous cell 
carcinoma patients were arranged into high- and low-risk subgroups based on risk scores. The results 
exhibited that the survival probability of patients was markedly higher in the low-risk group than in the 
high-risk group (p<0.001). Following that, a precise bar line chart was devised to augment the clinical 
usefulness of the risk score, exhibiting strong predictive capabilities and calibration. Patients with both 
low and high risk displayed notable immune cell penetration and modifications in immune checkpoints. 
Further analysis of risk scores revealed that low-risk patients were sensitive to immunotherapy and 
multiple chemotherapeutic agents. In this study, we identify 2 cuproptosis subgroups and construct a 
new prognostic model, thus providing new insight into the prognostic assessment of oral squamous cell 
carcinoma subtypes and guidance for the development of more effective treatment options.
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Oral cancer is one of the most frequent head and 
neck cancers, with more than 370 000 new cases 
and approximately 170 000 deaths worldwide every 
year[1,2]. In addition, the mortality rate of oral cancer 
has increased at an annual rate of 0.5 % over the 
past 10 y despite substantial advances in surgical 
techniques, radiotherapy and chemotherapy[3]. Oral 
Squamous Cell Carcinoma (OSCC) is the most 
common type of oral cancer, which accounts for about 
90 % of oral cancer[4]. Moreover, the Overall Survival 
(OS) rate of OSCC has remained stable at around 
50 % in the past three decades with insignificant 

improvement[5,6]. Accordingly, the construction of 
an appropriate and effective prognostic model is a 
necessity for the evaluation, diagnosis and treatment 
of OSCC patients, which can improve the early 
diagnosis and survival of OSCC. 

Cuproptosis is one of the hot topics in cancer 
research. A new type of cell death, copper induced 
cell death (also termed cuproptosis), was discovered 
by a team of researchers from the Massachusetts 
Institute of Technology and the Broad Institute of 
Harvard University, which differs markedly from 
the identified pyroptosis, apoptosis, ferroptosis and 
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necroptosis. Cuproptosis occurs in human cells and 
has a strong connection with hindered mitochondrial 
respiration. This process involves an excessive 
amount of intracellular copper being transported to 
mitochondria through ion carriers. Once inside, the 
copper binds to fatty acrylate components within the 
mitochondrial Tricarboxylic Acid (TCA) cycle, it 
disrupts iron-sulfur clusters. These events contribute 
to the aggregation of fatty acylated proteins, loss 
of iron-sulfur clusters and protein toxicity stress. 
Ultimately, this leads to cell death[7]. Previous 
studies have shown that the content of copper 
ions is higher in the serum and tumor tissues of 
patients with various human malignancies, including 
breast cancer, than in normal serum and tissues[8]. 
Moreover, copper ion accumulation has also been 
elucidated to be associated with proliferation, 
growth, angiogenesis and metastasis in tumors[9,10]. 
However, little is known about the mechanism of 
the high expression of Cuproptosis-Related Genes 
(CRGs) in oral cancer tissues, the carcinogenic role 
of these genes through the activation of cuproptosis-
mediated carcinogenic pathways, and their role in 
tumor immunotherapy. Therefore, the exploration 
and development of a prognostic model involving 
CRGs are helpful in accurately understanding the 
prognosis of OSCC patients. 

In the present research, OSCC sample transcriptomic 
information was acquired from the Xena repository, 
while CRGs were gathered from separate 
investigations. Based on this foundation, a predictive 
risk model was developed to assess the level of 
prognostic risk for individuals with OSCC. The 
results revealed that this model not only accurately 
predicted the survival of patients, but also effectively 
evaluated the immune status of OSCC patients and 
the sensitivity of patients with different risk values to 
immunologic drugs and chemicals. In summary, the 
prognostic risk model provides a new perspective on 
the management of OSCC patients.

MATERIALS AND METHODS

Datasets and preprocessing of OSCC:

The Ribonucleic Acid sequencing (RNA-seq) 
data (HTSeq counts) of OSCC were downloaded 
from the Xena website (https://xena.ucsc.edu/) of 
the University of California, Santa Cruz. Clinical 
pathologic data were also collected, including age, 
gender, pathological grade, tumor stage, tumor-node-
metastasis stage, vital status and survival time. CRGs 

were obtained from the study of Tsvetkov et al.[7]. 
For survival analysis, raw counts of RNA-seq data 
were normalized with the Fragments Per Kilobase 
Million (FPKM) method and Log2-based conversion 
(log2FPKM). 

Construction of a prognostic signature of CRGs with 
Least Absolute Shrinkage and Selection Operator 
(LASSO) regression:

LASSO regression was applied to choose predictor 
variables and avoid overfitting. Following that, 
comprehensive Cyclooxygenase (COX), regression 
assessments were performed to determine the 
concluding elements incorporated within the risk 
profile. Prognostic predictors of OSCC patients 
were identified by developing a risk signature as per 
cuproptosis-related messenger RNA (mRNAs). The 
formula employed to determine the risk score is as 
follows: 
Risk Score=∑I=1N(Expi×Coei) 
Within this equation, N symbolizes the count of 
cuproptosis-associated mRNAs in the prognostic 
risk profile, Expi denotes the expression level 
of each mRNA, and Coei signifies the regression 
coefficient for each mRNA in the multivariable 
COX regression evaluation. Based on the median 
risk score, patients were categorized into high- and 
low-risk cohorts. Subsequently, risk scores were 
calculated with regression coefficients for identifying 
the prognostic signature of OS. Patients were divided 
into high- and low-risk classifications using the 
median risk score. The R package "ggsurvplot" 
was employed to generate a Kaplan-Meier survival 
chart for comparing OS between the high- and low-
risk groups. Building on this aspect, the Receiver 
Operating Characteristic (ROC) curve was created 
using the R package "survival ROC" to assess 
prediction accuracy.

Assessment of cellular infiltration within the Tumor 
Microenvironment (TME):
The single-sample Genomic Enrichment Analysis 
(ssGSEA) method was employed to gauge variations 
in the enrichment of 28 immune cells within an 
OSCC cluster. Subsequently, the R software package 
was used for conducting differential abundance 
evaluations to identify significant alterations across 
distinct cell infiltration clusters in the TME.

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis:
The GO analysis was conducted for assessing the 
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enrichment of GO terms associated with CRGs. All 
of these genes were mapped directly to the database 
for the KEGG analysis. The ggplot2 R software 
package was used to identify the major biological 
processes and pathways of these genes. 

Construction of a line graph:

The R packages "survival" and "Regression Modeling 
Strategies (RMS)" were harnessed to build a diagram 
merging risk scores with clinic pathological 
attributes for estimating and scrutinizing the 1 y, 
3 y and 5 y survival outcomes of OSCC patients. 
Calibration curves were applied to ascertain if the 
projected survival rates corresponded to the genuine 
survival rates.

Drug sensitivity analysis:

The R package "pRRophetic" was used to assess 
drug sensitivity in various risk groups, predicting 
the Half Maximal Inhibitory Concentration (IC50) 
for commonly employed chemotherapeutic drugs in 
OSCC therapy. The Wilcoxon signed rank test was 
applied to detect disparities between the groups.

Statistical analysis: 

The R Statistics Program (version 4.1.0) was utilized 
for analysis and plotting in our research. As 
necessary, data analysis was performed using the 
student t-test or Mann-Whitney U test for comparing 
two groups, or the Kruskal-Wallis test for comparisons 
involving three or more groups. OS curves were 
assessed with the Kaplan-Meier technique, and 
differences between groups were analyzed using 
log-rank tests. Forest plots were generated using the 
"ggforest" function in the "survminer" and "survival" 
R packages. Somatic mutation information from The 

Cancer Genome Atlas (TCGA)-OSCC was examined 
and visualized using the maftools R package. 
Risk scores and outcomes were appraised through 
multivariate and univariate Cox proportional hazard 
regression analyses. Differences with p values below 
0.05 were deemed statistically significant.

RESULTS AND DISCUSSION
The LASSO-Cox regression approach was 
employed to establish the risk signature, eventually 
identifying seven genes based on the optimal 
Gamma (λ) value (fig. 1A). The risk score was 
determined by utilizing the coefficient of each 
gene. Risk score=-0.099×Pyruvate Dehydrogenase 
E1 Subunit Beta (PDHB) (exp)+0.095×ATP7B 
( e x p ) + 0 . 1 8 9 × D i h y d r o l i p o a m i d e 
S-Succinyltransferase (DLST) 
(exp)+0.027×SLC31A1 (exp)+0.198×FDX1 
(exp)+0.049×Lipoyltransferase 1 (LIPT1) 
(exp)+0.077×Glycine Cleavage System Protein H 
(GCSH) (exp). Utilizing the median risk score, 283 
patients were allocated to the low-risk group and 282 
to the high-risk group. Additionally, this risk formula 
was also utilized to calculate the risk score for each 
patient, and the correlation among the obtained seven 
genes in each cohort was plotted (fig. 1B). Mortality 
in OSCC patients increased with increasing risk 
(fig. 1C). It was observed from the risk profile that 
survival rates were lower and survival times were 
shorter in high-risk patients than in low-risk patients 
(fig. 1D). Similarly, Kaplan-Meier curves revealed 
that high-risk patients exhibited substantially shorter 
OS times and lower survival probability than low-
risk patients (fig. 1E) (Hazard Ratio (HR): 2.338, 
95 % Confidence Interval (CI) 95 %: 1.75-3.11, 
p<0.001). 

Fig. 1: Copper death mRNA screened by LASSO-COX regression model; screened 7-gene correlations; graph of comparative analysis of risk 
score scores in survival vs. death group; risk ROC curve; model risk score; risk coefficient in survival vs. death group and survival curve in high-
risk group vs. low-risk group
Note: (C) (  ): High risk; (  ): Low risk; (D) (  ): Dead; (  ): Alive; (E) (  ): High risk and (  ): Low risk

A B

D E
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(fig. 3A). Afterward, protein-protein interactions 
were analyzed to identify the correlation among 
genes, which showed a strong correlation among 
seven genes (fig. 3B). 
Clinical data and genetic features of patients in 
TCGA were combined to enhance the predictive 
model's clinical utility, leading to the creation 
of a multivariate COX regression model and a 
corresponding column chart. The column chart 
showed statistical significance for T stage, N stage, 
M stage, age, and risk scores (fig. 4A). The R package 
"regplot" was used to produce a graph depicting 
the risk score and additional clinical variables for 
the cuproptosis-related prognostic model in OSCC 
patients. Calibration curves for the cuproptosis risk 
score and other clinical factors in OSCC patients 
were generated using 1000 bootstrap methods to 
assess bias-corrected estimates between predicted 
and observed values and were analyzed with the 
R package "rms". The 1 y, 3 y, and 5 y calibration 
curves aligned with the estimated values, suggesting 
that the nomogram created with multivariate COX 
regression was reliable (fig. 4B-fig. 4D). Analysis of 
chemotherapy response with a risk model based on 
seven genetic signatures.

CIBERSORT and ssGSEA were performed to assess 
differences in immune function. Moreover, the 
CIBERSORT analysis revealed a greater proportion 
of Cluster of Differentiation (CD), T cells in the high-
risk group compared to the low-risk group (fig. 2A). 
The ssGSEA findings indicated that the high-risk 
group had a higher representation of 16 immune cell 
subtypes, including activated B cells, activated CD4 
T cells, activated CD8 T cells, activated dendritic 
cells, natural killer cells, and natural killer T cells 
(fig. 2B). Heatmaps were generated to display the 
overall status of 28 immune cell subtypes across 
both groups (fig. 2C). The observations showed that 
the high-risk group had more pronounced immune 
infiltration than the low-risk group, particularly in 
terms of CD8 T cell-related infiltration. 
GO and KEGG enrichment analyses were carried out 
to identify the biochemical roles of the seven core 
genes. The most prominent GO term associated with 
these core genes was the negative regulation of the 
immune system. Furthermore, the KEGG enrichment 
analysis displayed that the core genes were mainly 
involved in the TCA cycle, metabolic pathways, 
carbon metabolism and platinum drug resistance. 

Fig. 2: (A): CIBERSOTR algorithm showing the proportion of 16 immune cell species; (B): SSGSEA showing the proportion of 28 immune cell 
species expressed and (C): Showing the proportion of 22 immune cell species in OSCC patients
Note: (  ): High group and (  ): Low group

Fig. 3: (A) KEGG enrichment analysis of 7-mRNAs and (B) Protein-protein network construction of 7-mRNAs
Note: (  ): KEGG pathway
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in low-risk patients, while increased immune cell 
infiltration was observed in the high-risk group. 
Furthermore, the primary infiltrating cells in high-
risk patients included activated B cells, activated 
CD4T, CD8T, natural killer T cells and Myeloid-
Derived Suppressor Cells (MDSCs).
Activated B cells, a type of signal transduction 
mediator, convert Transforming growth factor beta1-
Activated kinase 1-Binding protein 2 (TAB2) into 
multiple biological processes. Of note, a prior study 
unraveled the potential pathogenic role of TAB2 in 
OSCC through activated B cells[11]. Furthermore, 
there is a notable association between the quantity 
of CD4+ T helper cells (Th1) and the concentration 
of CD8+ T cells within the TME[12]. Activated T cells 
express Programmed Death-Ligand 1 (PD-L1), a 
typical target in immunotherapy, on their surfaces[13]. 
Different from physiologically differentiated 
myeloid cells, MDSCs are distinctly characterized 
by relatively weak phagocytic function, 
immature phenotype and morphology and anti-
inflammatory and immunosuppressive functions. 
Mounting evidence has reported MDSCs as a basic 
characteristic of malignancies and a potential target 
for tumor therapy.

The response to chemotherapy drugs was assessed in 
both elevated- and diminished-risk categories using 
the R package "pRRophetic". Fig. 5 demonstrates the 
results of three chemotherapeutic agents commonly 
utilized for OSCC management. In particular, the 
IC50 values for 5-Fluorouracil, Bleomycin and 
Paclitaxel were considerably lower for the reduced-
risk category compared to the elevated-risk category, 
indicating that patients with low-risk OSCC were 
more susceptible to these treatments as shown in fig. 
5A-fig. 5C.
This research examined variations in expression and 
mutation co-occurrence of CRGs between OSCC and 
healthy samples, as well as the association between 
these gene expressions and survival outcomes and 
prognosis. We noted that CRGs were, to a certain 
degree, associated with the initiation and progression 
of OSCC. Therefore, a 7-gene risk prognostic model 
was established for OSCC based on CRGs with 
LASSO regression. 
Our findings highlighted significant disparities in 
immune infiltration between high- and low-risk 
groups. The immune infiltration analysis revealed 
a higher occurrence of immune desert phenotypes 

Fig. 4: (A) Columnar line graph based on multifactorial COX regression and (B) Columnar line graph for validation of 1 y, 3 y and 5 y survival 
times
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and ATP Binding Cassette Subfamily G Member 2 
(ABCG2) was associated with the lower survival 
rate of HNSCC patients, concordant with our 
results. Among the remaining 5 genes, LIPT1 has 
been confirmed as a novel therapeutic target for 
hepatocellular carcinoma[19]. LIPT1 can modulate 
lipoic acid metabolism by transferring the lipoyl 
group of lipoyl adenylate to the GCSH and the 
2-oxyacid dehydrogenase E2 subunit[7]. Liu et 
al.[20] found from recent studies that CRGs are 
regulated by multiple microRNAs (miRs), among 
which the most important miRs are hsa-miR-185-
5p and hsa-miR-98-5p. Furthermore, hsa-miR-98-
5p mediates PDHB, and hsa-miR-576-5p regulates 
ATP7B and LIPT1 simultaneously. DLST is an 
E2 component of the Alpha-Ketoglutarate (αKG) 
dehydrogenase complex that regulates the entrance 
of glutamine into the TCA cycle to undergo oxidative 
decarboxylation. This conversion is irreversible and 
leads to the production of succinyl-CoA, which in 
turn generates Nicotinamide Adenine Dinucleotide 
(NAD) for oxidative phosphorylation. Anderson et 
al.[21] observed from studies on high-risk patients 
with neuroblastoma that DLST upregulation elevated 
tumor cell invasion, whereas DLST knockout 
hindered the occurrence and development of this 
disease.
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The scoring model generated in our research could 
quantify the degree of cuproptosis-induced risk in 
each OSCC patient. By closely studying immune 
infiltration in groups with varying levels of risk, 
personalized treatment and prognosis assessment 
can be provided for OSCC patients. Reportedly, 
predicting future tumor events is crucial for both 
patients and clinicians[14]. Programmed cell death is 
involved in many biological functions, such as the 
growth, movement and spread of cancer cells, and 
the TME is being explored as a new way to predict 
outcomes and possibly target therapies[15]. As a 
new model of copper-induced cell death, copper 
poisoning is a promising therapeutic prospect 
for tumor patients[7]. Wang et al.[16] established a 
prognostic model of OSCC after immunogenic cell 
death was classified, providing a new approach to 
immunotherapy.

In our study, the genes involved in the model shared a 
relatively strong correlation with infiltrating immune 
cells and immune checkpoint genes, thus providing 
a new perspective for clinical immunotherapy. Our 
study has identified seven hub genes, of which 
two, ATP7B and SLC31A1, have been found to 
be linked to Head and Neck Squamous Cell 
Carcinoma (HNSCC). ATP7B, which encodes 
the copper transporter, participates in the release 
of cisplatin by head and neck cancer cells into the 
extracellular space, thereby enabling cancer cells to 
escape cisplatin-induced cell death. In the research 
by Ryumon et al.[17], the application of cisplatin 
increased the level of ATP7B, a cisplatin effector 
transporter. Accordingly, targeting ATP7B could be 
a promising approach in the treatment of HNSCC. 
Cluster analyses by Warta et al.[18] unraveled that 
simultaneous upregulation of SLC31A1, ATP 
Binding Cassette Subfamily C Member 2 (ABCC2), 

Fig. 5: Semi-inhibitory concentrations of drugs for 5-fluorouracil, bleomycin, paclitaxel
Note: (  ): High risk and (  ): Low risk
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