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Tuberculosis (TB), a major global problem caused 
by Mycobacterium tuberculosis, which is a life 
threatening intracellular pathogen in humans. It infects 
approximately one-third of the world’s population[1,2]. 
TB mostly affects people whose immunity is 
compromised. TB has many manifestations affecting 
bone, the central nervous system and many other 
organ systems, but it is primarily a pulmonary 
disease due to deposition of aerosol droplets contain 
M. tuberculosis onto lung alveolar surfaces[3]. Two 
types of drug resistant M. tuberculosis strains are 
currently recognized namely multi drug-resistant TB 
(MDR TB) and extensively drug-resistant TB (XDR 
TB)[4].

The recent emergence of multidrug-resistant strains 
of M. tuberculosis needs rapid development of new 
antimicrobial drugs to combat TB[5]. Proteins that are 
essential for the pathogen survival and absent in the 

host such as enzymes of the shikimate pathway are 
attractive targets for the development of new antiTB 
drugs[6,7]. Adverse effects of existing treatment options 
open up new challenges for researchers to discover 
novel lead molecules for treatment of TB[8].

In M. tuberculosis, the enzymes of the shikimate 
pathway are responsible for biosynthesis of three 
aromatic amino acids that include phenyl alanine, 
tyrosine, tryptophan and a range of other primary and 
secondary metabolites like folic acid, an essential 
cofactor for many enzymatic process and salicylate 
used for the biosynthesis of the siderophores and 
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menaquinone, ubiquinone, naphthoquinones. The 
absence of this pathway in humans makes the enzymes 
of the pathway as the attractive drug targets[9-13].

AroB was identifi ed as drug target based on comparative 
and subtractive proteomics approaches from 23 
different strains of M. tuberculosis[14]. Dehydroquinate 
synthase (AroB) has long been regarded as a catalytic 
marvel because it is involved in the second step of 
the shikimate pathway. It catalyses the synthesis of 
dehydroquinate from 3-deoxy-d-arabino-heptulosonate 
7-phosphate, a crucial step of this pathway resulted an 
essential cyclic compound, required for the synthesis of 
aromatic compounds[15]. As it is having role in aromatic 
amino acid biosynthesis, overcoming starvation and 
survival at hypoxic conditions. Hence, to design novel 
inhibitors to the emerging MDR and XDR TB, AroB 
was selected in the present work for inhibitor design.

MATERIALS AND METHODS

Structure retrieval and binding site prediction:

Among the two available crystal structures, 3QBD and 
3QBE of AroB of M. tuberculosis, the best resolute 
structure of 3QBE was considered in this study to 
propose antagonists through virtual screening, docking 
and molecular dynamics simulations.  Crystal structure 
is available, but it’s not co-crystallized with substrate 
or inhibitor. Hence the orthologous structure of AroB 
of S. aureus co-crystallized with substrate analogue, 
carbaphosphonate (CBP) was selected to check the 
likelihood of the substrate binding site of AroB of M. 
tuberculosis using ClustalX v2.1.

Protein preparation:

Protein preparation tasks were performed with the 
protein preparation wizard. AroB crystal structure 
was imported to Maestro v11.1 (Schrödinger LLC, 
2017) and prepared prior to docking in order to add 
hydrogen atoms, bond order and formal charge 
corrections, removed atomic clashes, adjustment 
of tautomerization and ionization states of protein. 
The hydrogen bonding network was optimized by 
reorienting the hydroxyl and thiol groups in the protein 
and perform other operations that are not part of the 
X-ray crystal structure refi nement process. Finally the 
protein was subjected to energy minimization using 
Optimized Potential for Liquid Simulations (OPLS_3) 
force fi eld with minimum RMSD for termination 
of minimization set was 0.3 Å and Grid box was 
generated to 10 Å×10 Å around active site residues 

of the AroB. Using the grid region placed on binding 
cleft of substrate, the unwanted water molecules were 
removed from the active site of target protein using 
Protein preparation wizard[16].

Ligand-preparation:

Inhibitors (published ligands) of Ar oB of 
M. tuberculosis were retrieved from literature and 
DrugBank v5.0 database, a unique bioinformatics and a 
drug chemoinformatics resource that combines detailed 
(chemical, pharmacological and pharmaceutical) 
data with comprehensive drug. The compounds 
were prepared to create 3-dimensional geometries, 
assign proper bond orders, and generate accessible 
tautomer and ionization states processed using LigPrep 
module[17]. Clustering was performed for the inhibitors 
based on fi ngerprints or properties by using Canvas 
v3.1 program. A representative member from each 
cluster was selected based on XPG score.

Glide (grid-based ligand docking with energetics) 
XP docking:

Docking is a procedure to predict the preferable binding 
orientation between the two molecules to form a stable 
complex. Docking calculations were carried out using 
Glide v7.4. The prepared and optimized ligands were 
fl exibly docked in the grid box generated around active 
site residues of the protein using Monte Carlo-based 
simulated algorithm minimization method[18]. Glide 
Score (GScore) was used for representing binding 
affi nity, binding orientation and ranking. Docking 
was implemented to retain lead molecules with better 
binding affi nity and good binding orientation without 
stearic classes. 10 poses were generated during extra 
precision (XP) docking for each ligand and the best 
pose was retained after post docking minimization.

Exploring in-house library:

Based on the XP Gscore of the best docked DrugBank 
compound and substrate analogue were screened 
against an in-house library containing more than 
twenty-one million compounds from eMolecules, 
ChemBank, ChemPDB, KEGG ligand, Unannotated 
NCI, AntiHIV NCI, Drug likeness NCI, AkosGmbh, 
Asinex and TimTec databases[19]. The best docked two 
compounds as the structural anologues for DrugBank 
compound and substrates were obtained from the in-
house library. These best docked compounds and CBP 
(crystal substrate) were imported as AroB ligand-
dataset to Maestro v11.1 for virtual screening workfl ow 
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to dock with AroB of M. tuberculosis using Glide with 
defi ned pH range 7.0±2.0 by applying QikProp v5.1, 
Lipinski’s fi lter and reactive fi lter.

Docking studies:

AroB inhibitor dataset was docked with active 
site residues of AroB[20]. Virtual screening is a 
computational technique used in drug discovery to 
search libraries of small molecules in order to identify 
those structures, which are most likely to bind to a 
drug target. Schrödinger virtual screening workfl ow 
uses three fl exible docking methods, namely Glide 
high throughput virtual screening (HTVS), standard 
precision (SP) and XP docking[21]. The top ligand 
molecules obtained through XP docking were compared 
with literature and existing drug bank compounds and 
CBP (substrate analogue) to propose AroB inhibitors.

The top lead molecules obtained through XP docking 
were re-docked using quantum polarized ligand 
docking (QPLD). Prime/MM-GBSA calculation was 
performed to compute the free energy of ligand binding 
(∆G) for the top lead molecules with the common target 
by accessing both XP and QPLD complexes using 
Prime v3.2. The similar docking protocols followed 
by MM-GBSA calculations would be performed for 
selected inhibitors. The lead molecules with better 
XPG values were compared with existing ligands and 
proposed as potential inhibitors of their corresponding 
drug target. Binding free energies and binding modes 
of the proposed lead molecules would be reassessed 
using induced fi t docking (IFD), which implements 
both receptor and ligand fl exibility. The combination of 
molecular docking and Prime/MM-GBSA simulation 
can not only be used to rapidly and accurately predict 
the binding-free energy and rank the ligands but 
also provide a novel strategy for lead discovery and 
optimization towards the target.

Molecular dynamics:

Molecular dynamics simulations were performed for 
50 ns to analyse the conformational stability of AroB- 
CBP and-AroB-lead 1 complex in the solvated model 
system embedded with ordered water molecules using 
Desmond v4.8. Inter-molecular and intra-molecular 
interactions that infl uence the stability of protein-ligand 
complex were analysed using molecular dynamics. The 
solvated system was neutralized with counter ions and 
physiological salt concentration was limited to 0.15 M.
The protein-ligand complex system was assigned 
with optimized potentials for liquid simulations-

AA (OPLS-AA) 2005 force fi eld[22]. The system was 
specifi ed in periodic boundary conditions, the particle 
mesh Ewald method was applied for electrostatics. 
Lennard-Jones interactions cutoff was set to 10 Å 
and SHAKE algorithm was employed for limiting 
movement of all covalent bonds involving hydrogen 
atoms. The energy minimization of the solvated system 
was passed through a six-step relaxation protocol 
prior to molecular dynamics simulations[23]. In the 
earlier stage, only solvent molecules were allowed to 
minimize, while the protein and lead 1 are kept fi xed. 
Then the entire system was minimized in the later 
stages using a hybrid method of steepest descent and 
limited-memory Broyden-Fletcher-Goldfarb-Shanno 
algorithm[24]. For restraining the non-hydrogen solute 
atoms, at a temperature of 10 K with a thermostat 
relaxation constant of 0.1 ps a short period of 12 ps 
simulation was carried out in the NVT ensemble. 
Another short period of 12 ps simulation in NPT 
ensemble using 10 K temperature (with thermostat 
relaxation constant of 0.1 ps and barostat relaxation 
constant of 50 ps) for restraining the non-hydrogen 
solute atoms. Then in the NPT ensemble solute non-
hydrogen atoms were restrained for 24 ps simulations 
at a temperature of 300 K (with a thermostat relaxation 
constant of 0.1 ps; barostat relaxation constant of 
50 ps) and 24 ps simulations in the NPT ensemble were 
carried out with no restrains at 300 K temperature (with 
a thermostat relaxation constant of 0.1 ps; barostat 
relaxation constant of 2.0 ps). Berendsen thermostats 
and barostats were used to control the temperatures and 
pressures during the initial simulations[25].

Following the relaxation of solvated system, a 50 ns 
of dynamics production run in the NPT ensemble 
(at temperature of 300 K, with thermostat relaxation 
time of 1.0 ps; 1.01 bar pressure, with barostat relaxation 
time of 2.0 ps) using a Nose-Hoover thermostat and 
Martyna-Tobias-Klein barostat was performed. Energy 
and trajectory of the atomic coordinates data were 
recorded with a time interval of 4.8 ps. The protein-
CBP dock complexes were ruled out by energy 
potential, RMSD, RMSF, inter-molecular hydrogen 
bond interactions monitoring.

RESULTS AND DISCUSSION

The 3-dehydroquinate synthase (AroB) is a Zn2+-
dependent metalloprotein of M. tuberculosis involved 
in aromatic amino acid biosynthesis and secondary 
metabolite production to overcome starvation and 
survival at hypoxic conditions inside the human 
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macrophages[26]. AroB protein of S. aureus having the 
substrate analogue CBP (1XAI-CBP) was selected for 
the active site prediction. CBP binds to C-terminal 
domain of AroB leading to domain closure[27]. AroB 
protein of M. tuberculosis is having 76 % query 
coverage and 35 % identity with S. aureus. Active site 
residues shared 100 % identity in both the sequences 
and were represented in red colour boxes (fi g. 1). 
Hence, Asp-138, Lys-144, Asn-154, Lys-189, Lys-228, 
Arg-242, His-249 and Lys-323 were considered as an 
active site residues of AroB of M. tuberculosis.

The energies of prepared crystal structure of AroB 
(3QBE) of M. tuberculosis were minimized by protein 
preparation wizard. Active site residues were defi ned 
around grid generated within the AroB protein. 
DrugBank compounds for AroB is more in number so 
that clustering was performed for structural analogues, 
resulted 11 clusters were formed. From each cluster 
centroid molecule were chosen to perform docking 
with substrate analogue (CBP). About 1082 prepared 
DrugBank compounds and one substrate analogue 
(CBP) were docked with AroB active site residues. 
Among the 1082 dock complexes, pravastatin possess 
the least XP GScore of –13.074 kcal/mol and CBP 
possesses XP Gscore of –10.665 kcal/mol with good 
bonded and non-bonded interactions with inhibitor 
binding site residues shown in Table 1 (fi g. 2). The best 
docked pravastatin and CBP were chosen for screening 

against in-house library database. Six thousand 
structure analogues obtained from the in-house library, 
pravastatin, substrate analogue (CBP) a total of 6002 
compounds of AroB were imported to form an inhibitor 
dataset for docking.

Rigid receptor docking, QPLD and IFD protocols 
were employed to predicted the scoring and binding 
interactions between AroB and the ligands. In 
virtual screening a large number of molecules are 
ranked according to their likelihood to be bioactive 
compounds, with the aim to enrich the top fraction 
of the resulting list[25]. Out of 6002 ligands docked in 
HTVS method, top ranked 600 ligands were re-docked 
using SP method. Similarly top ranked 60 ligands were 
obtained through SP method were re-docked using XP 
docking method, 30 docked complexes were obtained 
with docking scores. Among them, two leads possessed 
better scoring function than the pravastatin and CBP 
(substrate analogue; fi g. 2). The lead complexes were 
re-scored with Prime/MM-GBSA. The re-scoring was 
performed as it is proved by various research groups 
that Prime/MM-GBSA re-scoring of docking complex 
(ΔG) showed better correlation to their experimental 
binding affi nity compared to XP Gscore[26].

The docking strategy resulted CBP formed eight 
hydrogen bonds with active site residues such as Asp-
138, Lys-144(2), Lys-228, Arg-242, His-249(2), and 

 
Fig. 1: Conserved active site of AroB proteins among M. tuberculosis and S. aureus
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Lys-323. Seven residues such as Asp-138, Lys-144, 
Asn-154, Lys-228, Arg-242, His-249, and Lys-323 
showed non-bonded interactions.

Lead 1 (OC[C@@H](C)[C@H]1CC[C@H]([C@@]
12C)[C@@H](O)CCC2) formed six hydrogen bonds, 
one salt bridge, one metal co-ordination and fi fteen 
van der Waal’s interactions with active site residues 
of AroB. Lys-78, Asp-138, Lys-144, Arg-242 (2) and 
Asn-246 are involved in hydrogen bond interactions; 
salt bridge with Lys-228; and one metal co-ordination 
with Zn; Glu-70, Gly-107, Ala-108, Asp-111, Leu-134, 
Ala-139, Asn-148, Lys-153, Asn-154, Lys-189, Leu-
245, His-249, His-253, Glu-256 and His-265 were 
involved in van der Waal’s interactions.

Lead 2 (CC1(C)[C@@H](C2)Cc(c3[C@H]12)noc3) 
formed six hydrogen bonds with active site residues 

Asp-138, Lys-144, Asn-154, Arg-242 (2) and Asn-246; 
two salt bridge interactions with Lys-144 and Lys-228; 
one pi-cation interaction with Lys-78 and one metal co-
ordination with Zn. Fifteen residues Glu-75, Asp-111, 
Leu-134, Ala-139, Thr-145, Gly-146, Lys-143, Leu-
245, His-249, His-253, Glu-256, Tyr-261, His-265, 
Lys-323 and Lys-324 were involved in van der Waal’s 
interactions.

The proposed two leads and CBP were surrounded 
by inhibitor binding site residues of AroB of 
M. tuberculosis. Among the proposed two leads, 
lead 1 shared similar interactions with AroB of 
M. tuberculosis as the DrugBank compound and 
substrate analogue. Both the leads also deciphered two 
hydrogen bonds with the key catalytic residue Arg-
242 and metal co-ordination with Zn, the same was 
observed with the pravastatin and CBP.

QPLD was employed to compute the atomic partial 
charges of the leads through quantum mechanical 
and molecular mechanical (QM/MM) calculations. 
The two leads, substrate analogue and pravastatin 
were subjected to re-dock with AroB using QPLD for 
evaluating relative binding interactions and strength 
of each potential lead with AroB after accurate charge 

Existing inhibitors and leads XP GScore (kcal/mol)
Carbaphosphonate –10.665
Provastatin –13.074
Lead 1 –13.889
Lead 2 –13.107

TABLE 1:  MOLECULAR DOCKING SCORE OF 
CARBAPHOSPHONATE, PRAVASTATIN AND 
LEADS

a

b c

Fig. 2: Interactions of AroB with a) carbaphosphonate b) lead 1 c) lead 2
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calculation through hybrid quantum mechanics 
and molecular mechanics method. The compounds 
were ranked based on QPLD XP Gscore. Two leads 
showed the highest binding affi nity towards AroB 
than the existing substrate analogue and pravastatin 
of AroB. Among them lead-1 showed the highest 
binding affi nity towards AroB with QPLD XP Gscore 
of -14.036 kcal/ mol (fi g. 3a). Active site residues 
and their fl exibility of AroB were considered for IFD 
protocol in Schrödinger. Lead molecule interacts with 
binding site residues of AroB by undergoing side chain 
or backbone conformational change or both. These 
conformational changes allow the AroB to generate 
closest conformer to the shape and binding mode of the 
leads. AroB lead interaction energies and total energy 
of the system was calculated as IFD score. Based 
on the IFD scores the poses generated were ranked. 
Similar binding interactions were observed in all the 
dock complexes with the leads docked around the 
AroB binding site residues. IFD had more interactions 
and scores than XP and QPLD (XP Gscore as –10.81 
kcal/mol). AroB showed fi ve hydrogen bonds with lead 
1 in the IFD docked complex (fi g. 3b).

AroB-CBP complex has the average total energy of 
–103268.55 kcal/mol and AroB-lead complex has an 
average total energy of –103305.95 kcal/ mol. Average 
RMSD for AroB backbone and CBP were 1.58 Å and 
1.12 Å and AroB backbone and lead were 1.85 Å 
and 0.66 Å, respectively which is stable throughout 
all 10416 trajectories (fi g. 4a-b). Average RMSF for 
backbone and side chain of AroB in accommodating 
CBP were 0.91 Å and 1.36 Å AroB in accommodating 
lead were 0.93 Å and 1.40, respectively (fi g. 5). Both 
lead and CBP exhibited hydrogen bonds with Asp-
138, Lys-144, Lys-189, Lys-228, Lys-242, Lys-323 
(fi g. 6). CBP shows ionic bond with Lys-228, six water 
mediated hydrogen bonds with Asp-138, Lys-144, Lys-
189, Lys-228, Lys-242, Lys-323 with the key binding 
site residues in forming a stable complex (fi g. 6a). Lead 
exhibited three ionic bonds with Asp-138, Lys-144 and 
His-249, three water mediated hydrogen bonds with 
Lys-144, Asp-154, Arg-242 with the key binding site 
residues in forming a stable complex (fi g. 6b).

Average RMSD and RMSF of lead 1 and CBP having 
stable complex were within 2.5 Å of 50 ns MD 
simulations. Among them, lead 1 exhibited the least 
XP Gscore and total energy compared with substrate 
analogue CBP. AroB-lead 1 shows more contacts with 
active site residues than the AroB- CBP complex.

In summary, two leads were fi nally obtained as the 
outcomes the study with better binding affi nity in 
terms of XPG scores, good structural properties with 
molecular contacts, pharmacological properties than 
the existing inhibitors and substrate. These absorption, 
distribution, metabolism, and excretion/toxicity 
properties of the proposed leads fall within the range 
of 95 % of FDA approved drugs were presented in 
Table 2 and 3. Aromatic amino acid biosynthesis is 
essential for the bacterium to survival, especially 
inside the CD4 cells by endogenous tryptophan 
synthesis. The ability of bacterial cells to replicate in 
the macrophages at hypoxic conditions is promoted 
by the biosynthesis and also lysis of phago-lysosome 
complex in macrophages. It also infl uences production 
of the secondary metabolites such as, siderophores, 
menaquinones, ubiquinone, napthoquinones, para-
amino benzoic acid, which are essential for the virulence 

a.

b.
Fig. 3: AroB-lead 1 interaction in (a) QPLD with MM/GBSA, 
(b) IFD with MM/GBSA
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Compounds M.W. Rotor SASA FOSA WPSA PISA Vol Donor 
HB

Accept 
HB IP EA Glob

Carbaphosphonate 270.17 8 440.7 108 3.54 0 748.15 6 11.15 10.4 -0.33 0.9042
Pravastatin 424.53 13 690.6 373 0 91.00 1318.646 3 8.1 9.11 -0.03 0.8420
Lead 1

428.56 13 704.8 500 0 0 1355.331 3 7.15 10.5 -1.07 0.8402

Lead 2 423.52 13 696.0 411 0 44.01 1324.4 2 7.9 9.78 0.42 0.8379
Parameters Range 95 % of drugs
MW = molecular weight (130.0/725.0)
Rotor = no. of rotation bonds (0.0/15.0)
SASA = total solvent accessible surface area (300.0/1000.0)
FOSA = hydrophobic solvent accessible surface area (0.0/750.0)
PISA = carbon Pi solvent accessible surface area (0.0/450.0)
Volume = molecular volume (A^3) (500.0/2000)
Donor = donor -hydrogen bonds (0.0/6.0)
AccptHB = acceptor-hydrogen bonds (2.0/20.0)
IP (eV) = ionization potential (7.9/10.5)
EA (eV) = electron affi nity (-0.9/1.7)
Glob = globularity (0.75/0.95)

TABLE 2: PHARMACOLOGICAL DESCRIPTORS OF CARBAPHOSPHONATE, PRAVASTATIN AND LEADS

nature of the pathogen. Siderophores of bacterium are 
important for iron uptake from the host and essential for 
replication of M. tuberculosis in human macrophages. 
The study states that the proposed 2 leads showed the 
best binding orientation, binding affi nity with strong 
hydrogen bond network, salt bridge interactions, good 

van der Waal’s interactions with active site residues 
(Asp-138, Lys-144, Lys-154, Lys-189, Lys-144, Lys-
228, Arg-242, His-249) of AroB-lead than the AroB- 
CBP. Lead possess least potential energy (-129939.20 
kcal/mol) when compared with CBP. The AroB-lead 
complex has an average RMSD and RMSF of the leads 
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were within 2.5 Å of 50 ns MD to block the functional 
activity by interacting with the inhibitor binding site 
residues of AroB than the AroB- CBP complex. Hence, 
these leads serve as novel therapeutics if synthesized 
and validated in animal models.
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