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Tao et al.: Prognostic Signature for Clear Cell Renal Cell Carcinoma

Necroptosis is a form of cell death, this study aimed to explore and verify the relationship between clear cell 
renal cell carcinoma and necroptosis, and to construct a necroptosis-related prognostic signature for diagnosis 
and treatment of clear cell renal cell carcinoma. 159 necroptosis-related genes were screened from the Kyoto 
encyclopedia of genes and genomes database of which 51 were differentially expressed in clear cell renal cell 
carcinoma, which included 16 prognosis-associated genes. Enrichment analysis showed that most of the 16 
genes were related to necroptosis, autophagy and the Wingless-related integration site signaling pathway. 
From the 16 genes, 11 independent necroptosis-related genes associated with clear cell renal cell carcinoma 
prognosis were screened by least absolute shrinkage and selection operator regression and multivariate Cox 
regression. These genes (BH3 interacting domain death agonist, Janus kinase 3, RANBP2-type and C3HC4-
type zinc finger containing 1, solute carrier family 25 member 4, interferon gamma receptor 2, phospholipase 
A2 group IVD, toll-like receptor 3, H2A clustered histone 7, interferon regulatory factor 9, phospholipase A2 
group IVB and H2A clustered histone 17) were used to construct a prognostic signature which was assessed 
by multivariate Cox regression analysis. Also, the relationship between the risk score and the stage and grade 
was determined. Receiver operating characteristic analysis and the decision curve analysis demonstrated the 
validity and clinical value of the prediction model which was internally validated. In this study, we explored 
the potential link between clear cell renal cell carcinoma and necroptosis to establish and validate an 11 gene 
prognostic signature that can effectively predict clear cell renal cell carcinoma prognosis.

Key words: Joint representation learning, necroptosis, clear cell renal cell carcinoma, multivariate Cox regression, 
nomogram

Renal Cell Carcinoma (RCC) is a common malignancy 
of the urinary system that accounts for 2 %-3 % of adult 
tumors[1]. The most common histological type of RCC 
is clear cell Renal Cell Carcinoma (ccRCC)[2] and the 5 
y survival rate of non-metastatic RCC is 55 %, whilst 
the 5 y survival rate of patients with metastatic RCC is 
10 %[3]. So, there is an urgent need for the development 
of improved methods for the screening and early 
diagnosis of RCC.
Classically, surgery has been adopted as the main 
treatment for ccRCC treatment. However, progress in 
the development of targeted therapies has enabled better 
treatments for ccRCC including new chemotherapy 
drugs targeting Hypoxia-Inducible Factor 2 (HIF-2) 
and autophagy genes[4]. Further complexity exists as 
existing therapeutic targets are prone to drug resistance 
and novel drug targets and biomarkers are needed to 
improve the prognosis for patients with ccRCC. As a 
result, there is currently major interest in identifying 

the molecular pathways involved in ccRCC of which 
necroptosis has been reported[5]. A better understanding 
of the role of necroptosis in the pathogenesis of ccRCC 
and establishing a prognostic signature is of great 
significance towards improving the early diagnosis and 
development of new treatments for ccRCC.
Apoptosis is a common mechanism of cell death. 
Traditional chemotherapy drugs inhibit tumor growth 
by inducing apoptosis in tumor cells[6], however, tumor 
cells can develop drug resistance through modulation 
of the apoptotic mechanisms. Degterev et al.[7] reported 
a unique cell death mechanism in vertebrates termed 
necroptosis. Classical apoptosis depends on the 
activation of caspases. Caspases inhibition sequesters 
the apoptotic pathway and is one of the mechanisms 
of drug resistance in tumors[8]. In contrast, necroptosis 
is a caspase-independent process and is a higher likely 
to inflammatory response compared to apoptosis[9]. 
The phosphorylation signaling pathway mediated by 
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Receptor-Interacting Serine/Threonine-Protein Kinase 
1 (RIPK1)/Receptor-Interacting Serine/Threonine-
Protein Kinase 3 (RIPK3) (RIPK1/RIPK3) activates 
the Mixed Lineage Kinase Domain like Pseudokinase/
Phosphorylated Mixed Lineage Kinase Domain like 
Pseudokinase (MLKL/pMLKL) resulting in cell size 
enlargement, organelle swelling, cell collapse after 
membrane perforation and the release of cellular 
contents. Consequently, the immune response is triggered 
and necrotic cells are eliminated by macropinocytosis 
corpuscles. When the classical apoptotic pathway is 
inhibited due to caspase inactivation, necroptosis is 
activated and so it is believed that tumor cells that are 
resistant to apoptosis may be sensitive to cell death via 
activation of the necroptosis pathway[9]. These findings 
suggest that necroptosis and its regulatory mechanisms 
may be a potential target for cancer therapy.
Previously studies have developed prognosis-related 
models for ccRCC[10]. However, there few studies 
have reported the relationship between necroptosis and 
ccRCC and to date no prognostic models have been 
developed in this area. In this study, we investigated the 
relationship between ccRCC and necroptosis using The 
Cancer Genome Atlas (TCGA) database. We established 
a necroptosis-related gene prognostic signature and 
examined its clinical value to demonstrate its potential 
use in supporting the diagnosis and treatment of ccRCC.
MATERIALS AND METHODS

Data collection and processing:
From the Kidney Renal Clear Cell Carcinoma (KIRC) 
queue of TCGA/National Cancer Institute Genomic 
Data Commons (GDC) (https://portal.gdc.cancer.gov/)
[11], we downloaded ccRCC Fragments Per Kilobase 
Million (FPKM) standardized Ribonucleic Acid (RNA)-
seq data and the remaining clinical data after excluding 
patients lost at follow-up. Necroptosis-Related Genes 
(NRGs) were retrieved from Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (https://www.kegg.jp/) 
database[12].
Differential expression analysis:
Based on gene expression in ccRCC tissues, we 
performed differential expression analysis using 
the “DESeq2” package. With log2|fc|>1 and p-value 
adjusted (Padj)<0.01 as the standards, we determined 
the Differentially Expressed Genes (DEGs) in the 
tumor tissues and constructed volcano plots. The 
Differentially Expressed Necroptosis Genes (DENGs) 
were sorted and plotted using Venn diagrams. Univariate 
Cox regression was used to screen out prognosis-

related genes that intersected with the DENGs. A Venn 
diagram was plotted again to obtain the DENGs related 
to prognosis. The data were visualized by constructing 
heat maps and box plots of differential expression. This 
process used the “grammar of graphics plot 2 (ggplot2)
[13]”, “Cairo” and “ggrepel” packages in the R software.
Gene Ontology (GO) functional enrichment and 
KEGG pathway enrichment:
GO functional enrichment and KEGG pathway 
enrichment analyses were performed using the GO 
(http://geneontology.org) and KEGG (http://www.
genome.jp/kegg/) databases. The selected NGRs were 
enriched and combined with the log Fold Change (logFC) 
values. The results of the GO and KEGG enrichment 
analyzed were in different graphical formats. In this 
process, the ggplot2, GOplot[14], clusterProfiler[15] and 
the org.Hs.eg.db packages were used.
Gene Set Enrichment Analysis (GSEA):

The logFC values of the selected DEGs were used 
as a molecular ranking to evaluate if the genes were 
significantly enriched in the gene set in the Molecular 
Signatures Database (MSigDB) (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp). These data were 
used to assess the phenotypic correlation of these genes.

Establishment of a Necroptosis Risk Scoring 
Signature (NRSS):
After identifying the DENGs, Least Absolute 
Shrinkage and Selection Operator (LASSO) regression 
analysis was used to eliminate collinearity between 
the independent variables to further screen DENGs 
and draw the LASSO variable trajectory diagram[16]. 
The independent prognostic genes were then screened 
by multivariate Cox regression and the regression 
coefficient beta (β) value was calculated to construct 
NRSS.
Risk scoring was performed for ccRCC patients 
according to scoring criteria. The patients were then 
divided into high and low-risk groups with the median 
of the risk score used as the threshold. These data were 
used to construct a risk factor graph. The Kaplan-
Meier method was used to plot survival curves for the 
high and low-risk groups and the screened genes were 
divided into high and low expression groups. The risk 
scores and other clinical information including age, 
gender and stage were incorporated into observational 
indicators for univariate and multivariate Cox analysis. 
The independent prognostic factors of ccRCC were 
determined and the forest plot was plotted based on the 
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results. Finally, the relationships between each clinical 
parameter and the risk score were analyzed using the 
“glmnet” and “survival” packages respectively in R.

Validation of the NRSS:
Receiver Operating Characteristic (ROC) curves was 
used to evaluate the predictive accuracy of the model. 
Decision Curve Analysis (DCA)[17] was used to evaluate 
the clinical utility of NRSS. The nomogram and the risk 
score Cox models were constructed to enable 1 y, 3 y 
and 5 y DCA analyses. A calibration graph was drawn 
to determine the probability of ccRCC patients and 
the probability of model prediction. These data were 
used to determine the evaluation effect of NRSS on the 
actual prediction results.
Next, the ccRCC patients were divided into a training set 
(n=269) and a validation set (n=270) using the random 
number method. The risk score for each patient was 
calculated based on the NRSS. Based on the median risk 
score, patients in the training and validation sets were 
divided into high and low-risk groups for validation. 
These procedures were performed using the “survival”, 
“stdca” and “pROC” packages in R.

RESULTS AND DISCUSSION

Differential expression analysis results were discussed 
below. The gene expression profiles of 539 tumor 
samples and 72 tumor-adjacent tissue specimens of 

ccRCC were analyzed and the clinical and survival 
data of the patients after downloaded from TCGA/
GDC. 159 NRGs were retrieved from KEGG. Genes 
with log2|fc|>1 and Padj<0.01 were used as standards 
and 17795 DEGs were screened out and shown in 
a volcano plot (fig. 1A). 51 DENGs (fig. 1B) were 
found amongst the DEGs. Univariate Cox analysis 
showed that 16 DENGs correlated with prognosis (fig. 
1C) of which 2 genes were down-regulated (Calcium/
Calmodulin Dependent Protein Kinase II Alpha 
(CAMK2A) and Solute Carrier Family 25 Member 4 
(SLC25A4)) and 14 genes were up-regulated (BH3 
Interacting Domain Death Agonist (BID), PYD and 
CARD Domain Containing (PYCARD), Janus Kinase 3 
(JAK3), Z-DNA Binding Protein 1 (ZBP1), RANBP2-
Type and C3HC4-Type Zinc Finger Containing 1 
(RBCK1), Interferon Gamma Receptor 2 (IFNGR2), 
Phospholipase A2 Group IVD (PLA2G4D), JMJD7-
PLA2G4B Readthrough (JMJD7-PLA2G4B), Toll-
Like Receptor 3 (TLR3), Phospholipase A2 Group 
IVE (PLA2G4E), H2A Clustered Histone 7 (H2AC7), 
Interferon Regulatory Factor 9 (IRF9), Phospholipase 
A2 Group IVB (PLA2G4B) and H2A Clustered Histone 
17 (H2AC17)). Heat maps were drawn based on the 
expression of these genes in 611 specimens (fig. 1D). 
Grouped boxplots were drawn to show the differences 
in expression differences of the 16 DENGs between the 
tumor and tumor-adjacent tissues (fig. 1E).

Fig. 1: The differentially expressed NRGs. (A) Volcano plot of 17795 DEGs; (B) Venn diagram of the intersection of DEGs and 
necroptosis genes; (C) Venn diagram of the intersection of DEGs and prognosis genes; (D) The heat map of 16 NRGs expression in 
tumor and normal tissue (     ) Normal group; (     ) Tumor group; (E) The boxplot of the differentially expressed NRGs, (     ) Normal ;
(     ) Tumor
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Functional enrichment analysis was performed on the 
DEGs to provide a further biological understanding of 
the genes. The results from the enrichment analyses were 
combined with the Z-score to evaluate the role of NRGs 
in these pathways. The GO term functional enrichment 
and the KEGG pathway enrichment analyses of these 
genes are summarized in (fig. 2). The top enriched terms 
in the biological processes were glycerophospholipid 
catabolic processes, necrotic cell death, necroptosis 
and the TLR signaling pathway. Also, we collected 
logFC values of the DEGs for GSEA and found that 
these genes were significantly enriched in the innate 
immune system, Wingless-Related Integration Site 
(WNT) signaling pathway, natural killer cell-mediated 
cytotoxicity and antigen processing and presentation 
(fig. 3). These findings suggested that the occurrence 
of ccRCC was associated with the expression of genes 
that regulate cell death processes such as necroptosis.

Based on the LASSO regression analysis of 16 DENGs 
and the results shown in fig. 4A and fig. 4B, the optimal 
penalty coefficient of the model was 13 and 13 NRGs 
were screened out (BID, CAMK2A, JAK3, RBCK1, 
SLC25A4, IFNGR2, PLA2G4D, TLR3, PLA2G4E, 
H2AC7, IRF9, PLA2G4B and H2AC17). Multivariate 
Cox regression analysis was performed on the 13 genes, 
11 of which could be used as independent predictors 
(BID, JAK3, RBCK1, SLC25A4, IFNGR2, PLA2G4D, 
TLR3, H2AC7, IRF9, PLA2G4B and H2AC17. The 
intercept of the regression analysis was -2.435 and the 
regression coefficient β of the 11 genes were 0.679, 0.024, 
0.232, -0.235, 0.118, 0.526, -0.266, -0.221, 0.314, 0.147, 
0.483, respectively. According to the above formula and 
the β value of the multivariate Cox regression, the NRSS 
was finally determined as follows; NRSS=(0.679* 
expression level of BID)+(0.024* expression level 
of JAK3)+(0.232* expression level of RBCK1)-
(0.235* expression level of SLC25A4)+(0.118* 
expression level of IFNGR2)+(0.526* expression 
level of PLA2G4D)-(0.266* expression level of 
TLR3)-(0.221*expression level of H2AC7)+(0.314* 
expression level of IRF9)+( 0.147* expression level 
of PLA2G4B)+(0.483* expression level of H2AC17)-
2.435.

The risk scores for each patient were calculated and 
the patients were divided into high (n=270) and low-
risk groups (n=269) based on the median risk value 
as a cut-off point. Heat map, risk score and survival 
outcomes plots are present in fig. 4C and fig. 4D. It can 
be seen that the mortality rate was significantly higher 
with increasing risk score. To determine the ability of 

the NRSS to predict the prognosis of ccRCC patients, 
Kaplan-Meier analysis of Overall Survival (OS) 
was performed. The OS in the high-risk group was 
significantly lower than in the low-risk group (Hazard 
Ratio (HR)=3.08, 95 % Confidence Interval (CI)=2.21-
4.31, p<0.001, fig. 5A). ROC curve analysis was used 
to evaluate the accuracy of the NRSS. As shown in 
fig. 5B, the Area Under the Curve (AUC) values for 
survival at 1 y, 3 y and 5 y were 0.783, 0.721 and 
0.740, respectively. These data indicated the robustness 
and high accuracy of the model in predicting patient 
prognosis. The median expression values were used as 
cut-off points to evaluate the impact of 11 prognostic 
genes on the OS of patients (fig. 5C-fig. 5M).

To determine if the NRSS affects the progression of 
ccRCC, we analyzed the correlations between the 
NRSS and clinic-pathological variables. The risk score 
of G3/4 disease was higher than that for G1/2 cancers 
(p=9e-09, fig. 6A). The risk score for M1 disease was 
higher than M0 stage disease (p=6.1e-06, fig. 6B). The 
risk score for T3/4 disease was higher than T2 and T1 
stage disease (p=8.2e-03, 8.0E-14, fig. 6C) and also the 
risk score for stage Ⅳ/Ⅲ disease was higher than that 
of stage I/ⅠI disease (p=1.3e-14, fig. 6D).

Univariate and multivariate Cox regression analyses 
were performed. To accurately assess patient prognosis, 
we established a nomograph (fig. 6E) that consisted 
of a variety of clinical and pathological features. 
Multivariate Cox regression analysis showed that age, 
grade, stage, M-stage and risk factors were independent 
predictors (fig. 6F). Univariate Cox regression analysis 
showed that age, grade, stage, T stage, M stage and risk 
factors were prognostic predictors of ccRCC (fig. 6G). 
These results suggested that the NRSS can be used as a 
novel prognostic biomarker. The score of each variable 
was calculated and used to comprehensively predict the 
prognosis of patients. The C-index of the established 
nomogram, risk signature and Tumor, Nodes and 
Metastases (TNM) stage were 0.765, 0.700 and 0.694, 
respectively (Table 1). In summary, the predictive 
ability of the NRSS was higher than the traditional 
TNM-staging system, however, the nomogram that 
integrated multiple clinical parameters had the highest 
accuracy (fig. 7). The calibration curve results also 
confirmed a good agreement between the actual and 
predicted probabilities (fig. 7A-fig. 7C). Consistent 
with the above data, the DCA results shown in fig. 
7D-fig. 7F also showed that the nomogram combined 
with various clinical features was more valuable for 
clinical applications.
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Fig. 2: DEGs expressed in normal and tumor groups of ccRCC are involved in necroptosis-related pathways. (A) The significant 
terms of GO function enrichment, (    ) BP; (    ) CC; (    ) MF; (B) The significant terms of KEGG analysis, p-adjust (    ) 0.04; (    ) 
0.03; (    ) 0.02; (    ) 0.01; Counts (    ) 4; (    ) 28; (    )51; (C) The network diagram, blue nodes represent items, red nodes represent 
molecules and the lines represent the relationship between items and molecules, Counts (    ) 5; (    ) 28; (    ) 51; (D) Enrichment string 
diagrams of NRGs, LogFC (    ) Up; (    ) Down; (E) The circle shows the scatter map of the logFC of the specified gene
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Fig. 3: GSEA. (A) GSEA validated enhanced activity of reactome innate immune system; (B) GSEA validated enhanced activity 
of WNT signaling pathway; (C) GSEA validated enhanced activity of nature killer cell mediated cytotoxicity; (D) GSEA validated 
enhanced activity of antigen processing and presentation

Fig. 4: Establishment of NRSS Signature. (A) Ten-time cross-validation for tuning parameter selection in the LASSO model; (B) 
LASSO coefficient profiles; (C) The heat map of 11 NRGs in patients with ccRCC (    ) 8; (    ) 4; (    ) 0; (    ) -4; (D) The risk score, 
survival status of 11 NRGs in patients with ccRCC, Risk group (    ) Low; (    ) High; (    ) 0; (    ) 1
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Fig. 5: Analysis of NRGs as an independent prognostic factor. (A)Kaplan-Meier survival curves show OS and 95 % CI for high and 
low-risk patients with ccRCC based on the NRSS; (B) 1 y, 3 y and 5 y ROC and AUC=0.783, 0.721 and 0.740, respectively; (C-M) 
Kaplan-Meier survival curves of the 11 genes in ccRCC, (      ) Low; (      ) High
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Fig. 6: The correlations between the NRSS and clinic-pathological variables. (A) The relationships between NRSS and T stage 
(p=0.1, 8.0e-14, 8.2e-03); (B) The relationships between NRSS and M stage (p=6.1e-08); (C) The relationships between NRSS and G 
stage (p=9e-09); (D) The relationships between NRSS and stage (p=1.3e-14); (E) Prognostic nomogram for predicting the survival of 
patients with ccRCC; (F) Univariate Cox regression of clinical characteristic and risk score model; (G) Multivariate Cox regression 
of clinical characteristic and risk score model

Cohorts Variables C-index (95 % CI)
ccRCC TNM-stage 0.700 (0.679-0.721)

NRSS 0.751 (0.733-0.770)

Nomogram 0.787 (0.770-0.804)

TABLE 1: THE C-INDEX OF TNM STAGE, NRSS AND NOMOGRAM

Fig. 7: Performance of NRSS. (A-C) Calibration curves of the nomogram for predicting survival at 1 y, 3 y and 5 y. If the actual 
curve is closer to the ideal curve, the nomogram prediction accuracy is higher, (      ) 1 y, 3 y, 5 y; (      ) Ideal line; (D-F) DCA of this 
nomogram, including the TNM stage, risk score model, the nomogram shows that advanced age, grade, risk score and partially 
were better than stage for predicting survival for 1 y, 3 y, 5y, (      )  TNM; (      ) Risk score; (      ) Nomogram; (      ) All positive;  
(      ) All negative
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Validation of the prognostic signature based on the 
prognostic NRGs for OS is shown below. To verify the 
applicability of the NRSS, we randomly divided the 
539 ccRCC patients in the entire dataset into training 
(n=269) and validation sets (n=270). The risk scores 
were calculated for each patient and used to stratify the 
patients in training and validation sets, and high and 
low-risk groups according to the median risk score. 
Consistent with the results from the whole dataset, the 

OS rate of patients in the high-risk group in the training 
and validation sets was lower than in the low-risk group 
(p<0.01, fig. 8A and fig. 8C). Also, the ROC curves of 
the two sets showed good performance. The AUCs for 
the 1 y, 3 y and 5 y OS of the training set were 0.832, 
0.746 and 0.738 respectively (fig. 8B), and the AUCs 
for the 1 y, 3 y and 5 y OS of the validation set were 
0.744, 0.700 and 0.737, respectively (fig. 8D).

Fig. 8: Validation of NRSS with training set and validation set. (A) Kaplan-Meier survival curves show OS and 95 % CI for high and 
low-risk patients with training set, (        ) Low; (        ) High; (B) 1 y, 3 y and 5 y ROC and AUC=0.832, 0.746 and 0.738, respectively, 
(       ) 1 y (AUC=0.832); (      ) 3 y (AUC=0.746); (       ) 5 y (AUC=0.738); (C) Kaplan-Meier survival curves show OS and 95 % CI 
for high and low-risk patients with validation set, (        ) Low; (        ) High; (D) 1 y, 3 y and 5 y ROC and AUC=0.744, 0.700 and 
0.737, respectively, (       ) 1 y (AUC=0.744); (      ) 3 y (AUC=0.700); (       ) 5 y (AUC=0.737)
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ccRCC is the most common subtype of RCC that 
accounts for more than 70 % of all cases worldwide[18]. 
ccRCC originates from the renal tubular epithelial cells 
which overexpress the Multidrug Resistance (MDR) 
protein and P-glycoprotein resulting in resistance to 
most chemotherapy regimens and radiotherapy[19]. 
Currently, only 5-Fluorouracil (5-FU) combined with 
immunotherapy drugs has efficacy in the treatment of 
ccRCC. However, it has been shown that Interferon alpha 
(IFN-α) alone has the same effect as when combined 
Interleukin-2 (IL-2) and 5-FU[20], so chemotherapy as 
a monotherapy is not recommended in the treatment 
of ccRCC. Developments have been made in the area 
of targeted therapies such as sorafenib, sunitinib and 
axitinib that target the Vascular Endothelial Growth 
Factor (VEGF) axis. However, existing therapeutic 
targets are prone to the development of drug resistance 
and there is an urgent need for novel therapies and a 
better understanding of the mechanisms of resistance 
to therapy.
Necroptosis is a novel mechanism of cell death that 
has been recently identified[7]. Necroptosis shares 
characteristics of both necrosis and apoptosis, and 
is jointly regulated by RIPK1, RIPK3 and MLKL[21]. 
Necroptosis is a double-edged sword in cancer 
progression[22] and its effects are dependent on tumor 
type and stage of development. For example, most 
tumor cells are resistant to necroptosis and promote 
tumor growth due to low expression levels of RIPK3 
and MLKL[23,24]. Conversely, tumor cells can activate 
death receptor 6 of the death receptor family to induce 
necroptosis in endothelial cells[25] and promote tumor 
cell extravasation and metastasis[26,27]. Given the broad 
roles of necroptosis in cancer, a better understanding 
of the relationship between necroptosis and ccRCC 
may facilitate the development of novel treatments for 
ccRCC.
Data from TCGA-KIRC was selected for analysis. 
Variation analysis was performed to identify gene 
expression differences between the normal and the 
tumor group and to obtain gene annotation information. 
We then conducted GO and KEGG enrichment analyses 
for the DEGs. The results showed, revealed that 
necroptosis and tumor-related signal pathways were 
significantly enriched indicating that necroptosis was 
closely related to the occurrence of ccRCC[28]. We then 
explored the potential role of DEGs in tumor prognosis.
We identified necroptosis related genes (DENGs) in 
the DEGs and showed that 11 independent necroptosis 
genes were associated with prognosis based on Cox 
and LASSO regression analyses. We then constructed 

a NRSS to effectively predict the prognosis. Amongst 
these genes, BID encodes death agonists that can 
heterodimerize with B-Cell Lymphoma 2 (BCL2) or 
Bcl-2 Associated X-Protein (BAX). Also, BID regulates 
Apoptosis Inducing Factor (AIF)-mediated caspase-
independent necroptosis by promoting BAX activation 
[29]. The protein encoded by JAK3 is a member of the 
JAK tyrosine kinase family that is mainly expressed in 
immune cells and transduces signals through tyrosine 
phosphorylation of interleukin receptors. Studies have 
shown that JAK3 can mediate autophagy and regulate 
necroptosis through caspases and other cysteine 
proteases[30].
The protein encoded by TLR3 is a member of the 
TLR family and plays a fundamental role in pathogen 
recognition and activation of the innate immune 
response. This occurs through Pathogen-Associated 
Molecular Patterns (PAMPs) that are expressed on 
infectious factors and mediate the production of 
cytokines required for effective immune development. 
TLR3 can also activate the Receptor-Interacting Protein 
1 (RIP1)/Receptor-Interacting Protein 3 (RIP3)/MLKL-
signaling pathway by combining with members of the 
Tumor Necrosis Factor Receptor (TNFR) superfamily 
and the TLR4 signal mediate necroptosis[31].
IRF9 encodes a member of the IRF family which is a 
group of transcription factors with a variety of functions 
including virus-mediated activation of interferon and 
regulation of cell growth, differentiation, apoptosis 
and immune system activity. Interferon beta (IFN-β) 
has been shown to induce continuous expression of 
Signal Transducer and Activator of Transcription 
(STAT) 1, STAT2 and IRF9 leading to the necroptosis 
of macrophages[32]. Also, GSEA has shown that the 
WNT pathway is significantly correlated with DEGs. 
Liu et al.[33] found that the downstream effector of 
the WNT/β-catenin pathway, Lymphoid Enhancer-
Binding Factor 1 (LEF1), is a transcriptional inhibitor 
of Chronic Lymphocytic Leukemia (CLL) and that 
down-regulation of LEF1 sensitizes CLL cells to 
Tumor Necrosis Factor alpha (TNFα)/zVAD-induced 
necroptosis. These findings suggest that ccRCC is 
associated with the expression levels of many genes 
that have known roles in regulating cell death processes 
including necroptosis.
In this study, Kaplan-Meier analysis demonstrated the 
effectiveness of the NRSS in predicting the prognosis 
of ccRCC. There was a significant difference in OS 
between the high and low-risk groups suggesting that the 
high-risk group was associated with adverse outcomes. 
The survival ROC and calibration curve results also 
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showed that the predictive effect of the model agreed 
with the actual results. Multivariate Cox analysis 
also showed that the NRSS was a strong independent 
predictor of prognosis. To comprehensively evaluate 
prognosis, we established a nomograph to score the 
survival probability of each patient by combining 
various clinical data. The prediction results of the DCA 
and C-index also showed that the prediction accuracy 
of the NRSS was higher than traditional TNM staging.
Compared with previous prognostic signature[34], we 
add internal validation to our work, which improves 
the reliability of the prediction ability of the model. 
Secondly, gene set enrichment analysis was used to 
further explain the phenotypic enrichment of ccRCC 
differential genes, providing a new perspective for 
further understanding the physiological process of 
ccRCC. Finally, we discussed the relationship between 
necrosis and ccRCC, in order to establish a new model 
for patient individualized diagnosis and treatment, and 
possibly provide new therapeutic targets.
The NRSS was internally validated which supported 
its strong predictive accuracy. However, our study 
has several limitations. Firstly, the mechanism of 
necroptosis in ccRCC requires further validation in 
vivo and secondly, we only used data from TCGA for 
analysis. Although internal validation was performed, 
external validation is required in other patient cohorts 
to confirm our findings.

In conclusion, we developed a necroptosis related gene 
prognostic model. In this process, we used LASSO 
regression to improve the accuracy and interpretability 
of the model and eliminate collinearity amongst the 
independent variables. The model was verified using 
DCA. The ROC curves were used to evaluate the quality 
of the model. Our data showed that the model had high 
sensitivity and specificity and should be considered 
clinical applications to analyze the prognosis of ccRCC 
patients. Our study provided new insights into the role of 
necroptosis in the management of ccRCC. It may play a 
role in the early diagnosis of ccRCC and the discovery 
of new therapeutic targets. The prediction results of 
the DCA and C-index also showed that the prediction 
accuracy of the NRSS was higher than traditional TNM 
staging, but further validation of our model is required 
in larger prospective studies to verify our findings.

Author’s contributions:

Yiming Tao contributed in conceiving designing and 
editing the manuscript. Yiming Tao, Hui Zhao, Wenpei 
Dang worked in manuscript writing. Xinxin Xu, Lijuan 
Zou, Yongsheng Li worked on contribution of logical 

interpretation and presentation of the results.

Acknowledgements:

The authors gratefully acknowledge the KEGG and 
TCGA database, which made the data available.

Conflict of interests:

The authors declare that they have no conflict of 
interests.

REFERENCES
1.	 Weissinger D, Tagscherer KE, Macher-Göppinger S, 

Haferkamp A, Wagener N, Roth W. The soluble Decoy 
Receptor 3 is regulated by a PI3K-dependent mechanism and 
promotes migration and invasion in renal cell carcinoma. Mol 
Cancer 2013;12(1):1-5.

2.	 Schöffski P, Guillem V, Garcia M, Rivera F, Tabernero J, 
Cullell M, et al. Phase II randomized study of Plitidepsin 
(Aplidin), alone or in association with L-carnitine, in patients 
with unresectable advanced renal cell carcinoma. Mar Drugs 
2009;7(1):57-70.

3.	 Li JK, Chen C, Liu JY, Shi JZ, Liu SP, Liu B, et al. Long 
noncoding RNA MRCCAT1 promotes metastasis of clear cell 
renal cell carcinoma via inhibiting NPR3 and activating p38-
MAPK signaling. Mol Cancer 2017;16(1):1-4.

4.	 Hasanov E, Jonasch E. MK-6482 as a potential treatment for 
von Hippel-Lindau disease-associated clear cell renal cell 
carcinoma. Expert Opin Investig Drugs 2021;30(5):495-504.

5.	 Wang R, Li H, Wu J, Cai ZY, Li B, Ni H, et al. Gut stem cell 
necroptosis by genome instability triggers bowel inflammation. 
Nature 2020;580(7803):386-90.

6.	 Vo TT, Ryan J, Carrasco R, Neuberg D, Rossi DJ, Stone RM, et 
al. Relative mitochondrial priming of myeloblasts and normal 
HSCs determines chemotherapeutic success in AML. Cell 
2012;151(2):344-55.

7.	 Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima 
N, et al. Chemical inhibitor of nonapoptotic cell death with 
therapeutic potential for ischemic brain injury. Nat Chem Biol 
2005;1(2):112-9.

8.	 Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-
Jimenez A, et al. Targeting renal cell carcinoma with a HIF-2 
antagonist. Nature 2016;539(7627):112-7.

9.	 Pikarsky E. Neighbourhood deaths cause a switch in cancer 
subtype. Nature 2018;562:45-6.

10.	 Chen M, Zhang S, Nie Z, Wen X, Gao Y. Identification of an 
autophagy-related prognostic signature for clear cell renal cell 
carcinoma. Front Oncol 2020;10:873.

11.	 Chandran UR, Medvedeva OP, Barmada MM, Blood 
PD, Chakka A, Luthra S, et al. TCGA expedition: A data 
acquisition and management system for TCGA data. PLoS 
One 2016;11(10):e0165395.

12.	 Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. 
KEGG: Kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res 1999;27(1):29-34.

13.	 Maag JL. gganatogram: An R package for modular 
visualisation of anatograms and tissues based on ggplot2. 
F1000Res 2018;7:1576.

14.	 Walter W, Sánchez-Cabo F, Ricote M. GOplot: An R package 
for visually combining expression data with functional 
analysis. Bioinformatics 2015;31(17):2912-4.

15.	 Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package 
for comparing biological themes among gene clusters. OMICS 
2012;16(5):284-7.

https://molecular-cancer.biomedcentral.com/articles/10.1186/1476-4598-12-120
https://molecular-cancer.biomedcentral.com/articles/10.1186/1476-4598-12-120
https://molecular-cancer.biomedcentral.com/articles/10.1186/1476-4598-12-120
https://www.mdpi.com/1660-3397/7/1/57
https://www.mdpi.com/1660-3397/7/1/57
https://www.mdpi.com/1660-3397/7/1/57
https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-017-0681-0
https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-017-0681-0
https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-017-0681-0
https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-017-0681-0
https://www.tandfonline.com/doi/abs/10.1080/13543784.2021.1925248?journalCode=ieid20
https://www.tandfonline.com/doi/abs/10.1080/13543784.2021.1925248?journalCode=ieid20
https://www.tandfonline.com/doi/abs/10.1080/13543784.2021.1925248?journalCode=ieid20
https://www.nature.com/articles/s41586-020-2127-x
https://www.nature.com/articles/s41586-020-2127-x
https://www.nature.com/articles/nchembio711
https://www.nature.com/articles/nchembio711
https://www.nature.com/articles/nchembio711
https://www.nature.com/articles/nchembio711
https://www.nature.com/articles/nature19796
https://www.nature.com/articles/nature19796
https://www.nature.com/articles/d41586-018-06217-3
https://www.nature.com/articles/d41586-018-06217-3
https://www.frontiersin.org/articles/10.3389/fonc.2020.00873/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.00873/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.00873/full
https://www.scienceopen.com/document?vid=49c6461c-8f9a-4374-ae43-077c471c06eb
https://www.scienceopen.com/document?vid=49c6461c-8f9a-4374-ae43-077c471c06eb
https://academic.oup.com/nar/article/27/1/29/1238108
https://f1000research.com/articles/7-1576/v2
https://f1000research.com/articles/7-1576/v2
https://academic.oup.com/bioinformatics/article/31/17/2912/184136?login=false
https://academic.oup.com/bioinformatics/article/31/17/2912/184136?login=false
https://academic.oup.com/bioinformatics/article/31/17/2912/184136?login=false
https://www.liebertpub.com/doi/10.1089/omi.2011.0118
https://www.liebertpub.com/doi/10.1089/omi.2011.0118


www.ijpsonline.com

Special Issue 1, 2022Indian Journal of Pharmaceutical Sciences167

16.	 Alhamzawi R, Ali HT. The Bayesian adaptive lasso regression. 
Math Biosci 2018;303:75-82.

17.	 Talluri R, Shete S. Using the weighted area under the net 
benefit curve for decision curve analysis. BMC Med Inform 
Decis Mak 2016;16(1):1-9.

18.	 Zheng Y, Wen Y, Cao H, Gu Y, Yan L, Wang Y, et al. Global 
characterization of immune infiltration in clear cell renal cell 
carcinoma. Onco Targets Ther 2021;14:2085-100.

19.	 Wang KJ, Meng XY, Chen JF, Wang KY, Zhou C, Yu R, et 
al. Emodin induced necroptosis and inhibited glycolysis in the 
renal cancer cells by enhancing ROS. Oxid Med Cell Longev 
2021;2021.

20.	 Zheng W, Zhou CY, Zhu XQ, Wang XJ, Li ZY, Chen XC, et al. 
Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma 
cells by inducting necroptotic death. Biomed Pharmacother 
2018;106:175-82.

21.	 Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, 
et al. Caspase-8 induces cleavage of gasdermin D to elicit 
pyroptosis during Yersinia infection. Proc Natl Acad Sci USA 
2018;115(46):E10888-97.

22.	 Wang Z, Guo LM, Zhou HK, Qu HK, Wang SC, Liu FX, et 
al. Using drugs to target necroptosis: Dual roles in disease 
therapy. Histol Histopathol 2018;33(8):773-89.

23.	 Davies KA, Tanzer MC, Griffin MD, Mok YF, Young SN, 
Qin R, et al. The brace helices of MLKL mediate interdomain 
communication and oligomerisation to regulate cell death by 
necroptosis. Cell Death Differ 2018;25(9):1567-80.

24.	 Nugues AL, El Bouazzati H, Hetuin D, Berthon C, Loyens A, 
Bertrand E, et al. RIP3 is downregulated in human myeloid 
leukemia cells and modulates apoptosis and caspase-mediated 
p65/RelA cleavage. Cell Death Dis 2014;5(8):e1384.

25.	 Strilic B, Yang L, Albarrán-Juárez J, Wachsmuth L, Han 
K, Müller UC, et al. Tumour-cell-induced endothelial cell 
necroptosis via death receptor 6 promotes metastasis. Nature 
2016;536(7615):215-8.

26.	 Jiao D, Cai Z, Choksi S, Ma D, Choe M, Kwon HJ, et al. 
Necroptosis of tumor cells leads to tumor necrosis and 
promotes tumor metastasis. Cell Res 2018;28(8):868-70.

27.	 Seifert L, Werba G, Tiwari S, Ly NN, Alothman S, Alqunaibit 
D, et al. The necrosome promotes pancreatic oncogenesis via 
CXCL1 and Mincle-induced immune suppression. Nature 
2016;532(7598):245-9.

28.	 Zhao C, Zhou Y, Ran Q, Yao Y, Zhang H, Ju J, et al. 
MicroRNA-381-3p functions as a dual suppressor of apoptosis 
and necroptosis and promotes proliferation of renal cancer 
cells. Front Cell Dev Biol 2020;8:290.

29.	 Cabon L, Galan-Malo P, Bouharrour A, Delavallée L, 
Brunelle-Navas MN, Lorenzo HK, et al. BID regulates AIF-
mediated caspase-independent necroptosis by promoting BAX 
activation. Cell Death Differ 2012;19(2):245-56.

30.	 Farkas T, Daugaard M, Jäättelä M. Identification of small 
molecule inhibitors of phosphatidylinositol 3-kinase and 
autophagy. J Biol Chem 2011;286(45):38904-12.

31.	 Yang ZH, Wu XN, He P, Wang X, Wu J, Ai T, et al. A non-
canonical PDK1-RSK signal diminishes pro-caspase-8-
mediated necroptosis blockade. Mol Cell 2020;80(2):296-310.

32.	 McComb S, Cessford E, Alturki NA, Joseph J, Shutinoski 
B, Startek JB, et al. Type-I interferon signaling through 
ISGF3 complex is required for sustained Rip3 activation 
and necroptosis in macrophages. Proc Natl Acad Sci USA 
2014;111(31):E3206-13.

33.	 Liu P, Xu B, Shen W, Zhu H, Wu W, Fu Y, et al. Dysregulation 
of TNFα-induced necroptotic signaling in chronic lymphocytic 
leukemia: Suppression of CYLD gene by LEF1. Leukemia 
2012;26(6):1293-300.

34.	 Zhao GJ, Wu Z, Ge L, Yang F, Hong K, Zhang S, et al. 
Ferroptosis-related gene-based prognostic model and immune 
infiltration in clear cell renal cell carcinoma. Front Genet 

This article was originally published in a special issue, “Trending 
Topics in Biomedical Research and Pharmaceutical Sciences” 
Indian J Pharm Sci 2022:84(1) Spl Issue “156-167”

This is an open access article distributed under the terms of the Creative 
Commons Attribution-NonCommercial-ShareAlike 3.0 License, which  
allows others to remix, tweak, and build upon the work non-commercially,  
as long as the author is credited and the new creations are licensed under 
the identical terms

https://www.sciencedirect.com/science/article/abs/pii/S0025556418300063?via%3Dihub
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-016-0336-x
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-016-0336-x
https://www.dovepress.com/global-characterization-of-immune-infiltration-in-clear-cell-renal-cel-peer-reviewed-fulltext-article-OTT
https://www.dovepress.com/global-characterization-of-immune-infiltration-in-clear-cell-renal-cel-peer-reviewed-fulltext-article-OTT
https://www.dovepress.com/global-characterization-of-immune-infiltration-in-clear-cell-renal-cel-peer-reviewed-fulltext-article-OTT
https://www.hindawi.com/journals/omcl/2021/8840590/
https://www.hindawi.com/journals/omcl/2021/8840590/
https://www.sciencedirect.com/science/article/abs/pii/S0753332218315105?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0753332218315105?via%3Dihub
https://www.pnas.org/content/115/46/E10888
https://www.pnas.org/content/115/46/E10888
https://www.hh.um.es/Abstracts/Vol_33/33_8/33_8_773.htm
https://www.hh.um.es/Abstracts/Vol_33/33_8/33_8_773.htm
https://www.nature.com/articles/s41418-018-0061-3
https://www.nature.com/articles/s41418-018-0061-3
https://www.nature.com/articles/s41418-018-0061-3
https://www.nature.com/articles/cddis2014347
https://www.nature.com/articles/cddis2014347
https://www.nature.com/articles/cddis2014347
https://www.nature.com/articles/nature19076
https://www.nature.com/articles/nature19076
https://www.nature.com/articles/s41422-018-0058-y
https://www.nature.com/articles/s41422-018-0058-y
https://www.nature.com/articles/nature17403
https://www.nature.com/articles/nature17403
https://www.frontiersin.org/articles/10.3389/fcell.2020.00290/full
https://www.frontiersin.org/articles/10.3389/fcell.2020.00290/full
https://www.frontiersin.org/articles/10.3389/fcell.2020.00290/full
https://www.nature.com/articles/cdd201191
https://www.nature.com/articles/cdd201191
https://www.nature.com/articles/cdd201191
https://www.jbc.org/article/S0021-9258(20)50549-8/fulltext
https://www.jbc.org/article/S0021-9258(20)50549-8/fulltext
https://www.jbc.org/article/S0021-9258(20)50549-8/fulltext
https://www.cell.com/molecular-cell/fulltext/S1097-2765(20)30612-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1097276520306122%3Fshowall%3Dtrue
https://www.cell.com/molecular-cell/fulltext/S1097-2765(20)30612-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1097276520306122%3Fshowall%3Dtrue
https://www.cell.com/molecular-cell/fulltext/S1097-2765(20)30612-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1097276520306122%3Fshowall%3Dtrue
https://www.pnas.org/content/111/31/E3206
https://www.pnas.org/content/111/31/E3206
https://www.pnas.org/content/111/31/E3206
https://www.nature.com/articles/leu2011357
https://www.nature.com/articles/leu2011357
https://www.nature.com/articles/leu2011357
https://www.frontiersin.org/articles/10.3389/fgene.2021.650416/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.650416/full

