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Dipole Moment and Anticancer Activity of Beta Lactams
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Das et al.: Dipole Moment of Anticancer Beta Lactams

This study investigates the correlation between in vitro anticancer activity and dipole moments of beta 
lactams by calculating the dipole moment with five different semiempirical methods (Austin model  
1/Recife model 1/Parametric model number 3/Parametric model number 6/ Modified neglect of differential 
overlap). Dipole moment value is analyzed to identify a correlation of experimental anticancer activity of 
beta lactams. To the best of our knowledge, this is the first report on relationship between dipole moment 
and anticancer activities of beta lactams. Six beta lactam compounds are considered for this study. It 
is observed that the active compounds have a significantly higher dipole moment value (ranging from 
5.12 to 4.3) compared to inactive compounds (ranging from 3.8 to 2.29). These data indicate that dipole 
moment might be a useful parameter for the estimation of the biological activity of beta lactams. This 
study also aims to determine the most prominent descriptor for cytotoxic activity of beta lactams to aid the 
development of more active anticancer agents.
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Beta (β) lactams are biologically active compounds. 
For example, these compounds have a wide range of 
medicinal activities, such as antibacterial[1], antifungal[2], 
anti-inflammatory[3], cholesterol absorption 
inhibitors[4-7], anti-hepatitis[8], antihyperglycemic[9] 
and analgesic properties[10]. β-Lactams have received 
attention as a consequence of its anticancer[11-18]. 
Cancer is a deadly disease and its activity in human 
cell is extremely rapid. Most of the currently available 
anticancer drugs are cytotoxic to normal as well as to 
neoplastic cells. Therefore, there is highest need for 
new anticancer agents with a high degree of potency 
against cancerous cells, low toxicity in normal cells 
and unique targets of action. A slow success rate of 
chemotherapeutic agents has led to increased interest 
in the development of β-lactams. Over the past decade, 
synthesis[19-21] and the anticancer activities of β-lactams 
derivatives have been widely studied by our group 
through a series of independent study[11-18]. During the 
course of this study, we realize an understanding and 
quantifying either intramolecular or intermolecular 
electronic interactions of β-lactams are required for 
further development. Towards this goal, in this study we 
have identified ground state dipole moment to correlate 

the anticancer activity of β-lactams. This study also 
helps to understand the influence of different substituted 
groups in the lactam rings. To our knowledge, this is 
the first study on revealing the correlation between 
dipole moment calculation and anticancer activities of 
β-lactams. Thus, this work is potentially significant and 
timely. Six different β-lactams used for dipole moment 
calculation were shown in fig. 1. β-lactam 1 has a phenyl 
group linked to N1 position of the β-lactam ring, oxygen 
at the C2 position, an acetoxy group at the C3 position of 
the ring and a phenyl group at the C4 position as shown 
in 1(a) (fig. 1). To investigate the influence of the 
substituted groups, other compounds 2, 3, 4, 5 and 6 are 
also explored. For example, 2 has naphthalene group at 
the N1 position of the ring, 3 has anthracene group at the 
N1 position, 4 has phenanthrene group at the N1 position 
of the ring and 5 has chrysene group at the N1 position 
of the ring. In 6, we have interchanged the groups 
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at N1 and C4 position, lactam 6 is a cis stereoisomer. 
Arrows are used to indicate movement of electrons 
in each structure. Dipole moment for the compounds 
was obtained using the Spartan 18 software package. 
The most successful ones and most frequently used 
methods are Modified Neglect of Differential Overlap 
(MNDO)[22], Austin Model 1 (AM1)[23] and Parametric 
Model number 3 (PM3)[24]. All are based on the Neglect 
of Differential Diatomic Overlap (NDDO) integral 
approximation. New versions of the NDDO methods 
have recently been developed by reparametrized the 

Fig. 1: β-lactam geometry used for dipole moment calculation

existing methods, leading to the Recife Model 1 (RM1)
[25] and Parametric Model number 6 (PM6)[26] methods. 
In this study, we have used all these five methods for 
calculating dipole moment. All the measurements are 
performed with equilibrium geometry at ground state 
by changing AM1, RM1, PM3, PM6 and MNDO 
Hamiltonians. All the structures were drawn in two 
dimensional (2D) and then converted into their three 
dimensional (3D) forms using the same software 
followed by their energy minimization procedure. 
These result in most stereochemically stable structure of 

http://www.rm1.sparkle.pro.br/
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each compound, 1(b), 2(b), 3(b), 4(b), 5(b) and 6(b) in  
fig. 1. Anticancer activities of these β-lactams are shown 
in Table 1. Tests were done against nine human cancer 
cell lines. MDA-231 and MCF-7 are human breast 
cancer cells; BRO is human melanoma cells; OVCAR 
and SKOV are human ovarian cancer cells; HT-29 
is human colon cancer cells; PC-3 is human prostate 
cancer cells; HL-60 and K-562 are human blood cancer 
cells. The details of synthesis and anticancer activity 
are discussed before[12]. The data from cisplatin, 
the anti-cancer chemotherapy drug, is included as a 
reference. It revealed that 1, 2, 3 and 6 are inactive 
against any of these cell lines and showed maximum 
activity at concentrations above 20 µM/ml (a level 
not considered to have a significant effect). β-lactams 
4 and 5 demonstrated significant anticancer activity. 
Both of these compounds showed almost identical 
activity with cisplatin against some cell lines (MCF-7) 
and showed more activity than cisplatin against some 
cell lines (HT-29). The calculated ground state dipole 
moment (µ) value in Debye (D) for the mentioned six 
β-lactam compounds is shown in Table 2. It is observed 
that β-lactam 4 (phenanthrene group at the N1 position 
of the ring) and 5 (chrysene group at the N1 position 
of the ring) showed highest value of dipole moment, 
ranging from 5.12 to 4.3 D. Compared to other selected 
calculations methods, MNDO calculation giving lowest 
value for dipole moment (except in 2 and 6). From the 
dipole moment calculation and anticancer activity data, 
we believe that there is a direct relation with dipole 

moment and anticancer activity of β-lactams. Only 
4 and 5 demonstrated anticancer activity and their 
dipole moment was high (above 4.3 D) compared to 
other β-lactam compounds. Dipole moment is strongly 
dependent on the substitution at the N1 site, which 
suggested that the position of the substituted group 
influenced the anticancer activity. Dipole moment 
is directly affected by the arrangement of aromatic 
rings at the N1 site. Linear arrangements of aromatic 
rings (anthracene group, naphthalene group) make the 
compound less polar. Angular arrangements of aromatic 
rings (chrysene group, phenanthrene group) make the 
compound more polar by making large separation of 
charges in β-lactams. Anticancer activity test also had 
identified that the minimal structural requirement of 
the aromatic moiety for cytotoxicity is at least three 
aromatic rings in an angular configuration like in 
chrysene and phenanthrene group. 

This explanation is not valid for compounds 5 and 6. 
The compounds 5 and 6 are isomeric, but with different 
stereochemistry at the ring junction. They showed 
different dipole moment and anticancer activity. The 
inactive compound 6 has much less dipole moment 
compared to 5. It is again confirmed that at least 
three aromatic rings in an angular configuration must 
be present in N1 position of the ring. The substituted 
β-lactam ring plays an important role for electron 
density variation. Angular arrangements of aromatic 
rings in chrysene and phenanthrene group at the 
nitrogen of the ring act as strong electron-withdrawing 
groups that result in strong polar compounds. We 
have demonstrated that there is a relation between the 
dipole moment and anticancer activity of β-lactam 
compounds. Six different compounds were analyzed 
with five different dipole moment calculations. Dipole 
moment is high, above 4.3 D, for active compounds. 
This study also revealed that the substitutional group at 
the N1 in the β-lactam ring plays an important role for 
its anticancer activity. These results may open a way to 
design and synthesis more active anticancer β-lactam. 
This study, however, does not specify that high dipole 
moment controls anticancer activity of β-lactam 
compounds. Rather, we have identified a correlation 
between the dipole moment and anticancer activity 
of β-lactam compounds. This study is unique since 
such explorations with β-lactams and their anticancer 
activity have never been performed. Further studies in 
this area with other β-lactams are necessary to define 
the role of dipole moment and we are pursuing our 
research in this direction.

β-lactams AM1 RM1 PM3 PM6 MNDO
1 3.07 2.66 3 2.72 2.29
2 2.94 2.80 3.33 3.15 3.5
3 2.91 2.66 3.15 3.01 2.42
4 5.15 5.10 4.89 4.55 4.30
5 5.12 5.07 4.89 4.51 4.34
6 3.53 3.07 2.27 3.8 2.69

TABLE 2: CALCULATED DIPOLE MOMENT VALUES 
IN DEBYE (D)

Cell lines Cisplatin 4 5 1, 2, 3, 6
OVCAR 3.99 18.0 4.17 ˃20
BRO 7.66 10.48 10.84 ˃20
MDA-231 12.33 12.49 11.98 ˃20
MCF-7 10.05 10.09 9.81 ˃20
SKOV 5.99 18.0 6.88 ˃20
PC-3 4.66 9.3 16.32 ˃20
HL-60 1.66 5.21 3.64 ˃20
K-562 2.33 4.0 4.33 ˃20
HT-29 16.99 10.49 5.66 ˃20

TABLE 1: In vitro CYTOTOXICITY OF β-LACTAMS 
ON HUMAN CANCER CELL LINES (µM)
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