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Human gene therapy is deÞ ned as the introduction of 
new genetic material into the cells of an individual 
with the intention of producing a therapeutic 
beneÞ t[1-3]. A number of human diseases are known to 
be genetic in origin (Huntington�s chorea and cystic 
fibrosis to name a few) and virtually all diseases, 
except for trauma, have a hereditary component[4]. 
Thus, the opportunity to treat such disorders by 
replacing the defective gene(s) with a normal healthy 
gene (gene therapy) offers a novel therapeutic 
approach for patients who suffer from such diseases. 
Now, gene therapy routinely is evoked to encompass 
the use of deoxyribonucleic acid (DNA) as a drug 
to alleviate the symptoms of a disease, even if the 
therapeutic genes are not strictly �corrective� (in the 
sense of restoring a function known to be mutated 
in the affected cells). In its broadest terms, gene 
therapy represents an opportunity for the treatment 
of genetic disorders in adults and children by genetic 
modiÞ cation of human body cells[5]. All of the gene 
therapy trials currently approved for use in human 

patients target somatic cells that will live only as 
long as the patient. This ensures that the genetic 
treatment will affect only one generation and will 
not alter the genetic makeup of any offspring of the 
patient, since there is no spread of the therapeutic 
gene(s) to the gametes. This is known as the somatic 
gene therapy, and its purpose is to alleviate disease in 
the treated individual alone. More than 300 clinical 
trials involving gene transfer in patients have been 
approved and the Þ rst nucleic acid drug, an antisense 
oligonucleotide, fomivirsen (marketed as Vitravene) 
has been approved by the United States Food and 
Drug Administration (USFDA) for the treatment of 
cytomegalovirus retinitis in immunocompromised 
patients[6]. In contrast, it is also possible to target 
directly the gametes (sperm and ova) in order to 
modify the genetic proÞ le, not of the current, but of 
the subsequent generation of unborn �patients�. Gene 
transfer at an early stage of embryonic development 
also might have similar effects by achieving gene 
transfer to both somatic and germ line cells. This is 
known as the germ line gene therapy. 

Apart from the inability to predict the long-term 
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effects of altering the germ line by delivery of 
exogenous genetic material at the scientific level, 
there are many ethical, social, and commercial issues 
surround the technique. The social implications of 
such technology include the possibility that patients 
might suffer from depression as a result of being 
�genetically altered� or might not be accepted by 
society in the way that they were before treatment. 
The commercial implications of such technology 
are that the insurance companies and other such 
institutions also would want to access the available 
information prior to them granting life insurance 
policies. So, it is obvious that a person shown to have 
a predisposition to a genetic disease could be severely 
penalized because of a mutation in their DNA, even 
though they might never develop the disease. The 
biggest setback for gene therapy occurred in 1999 
when Jesse Gelsinger, an 18 year-old high-school 
graduate from Arizona, died as a result of a gene 
therapy experiment. Gelsinger developed a fever 
and blood clots throughout his body within hours of 
treatment to correct partial ornithine transcarbamylase 
(OTC) deÞ ciency, a rare metabolic disease that can 
cause a dangerous build-up of ammonia in the body 
and died four days later[7]. Despite this attempt to 
preserve public confidence in gene therapy, the 
Washington post documented six unreported deaths 
on 3rd November 1999 that had occurred in trials 
conducted at the Cornell Medical Center, Manhattan 
and at the Tufts University, Boston[8].

Nucleic acids are one of the most important sources 
not only for the understanding of the fundamental 
basis of human life but also for the development of 
a novel group of therapeutics. One of the signiÞ cant 
advantages of DNA-based drugs over currently 
available low molecular weight pharmaceuticals is 
their selective recognition of molecular targets and 
pathways, which imparts tremendous specificity 
of action. DNA-based therapeutics includes 
plasmids, oligonucleotides for antisense and antigene 
applications[9], DNA aptamers, and DNAzymes. In 
gene therapy, the gene transfer technologies are DNA 
delivery systems for nucleic acid based therapeutics. 

Although most of the DNA and RNA based drugs 
are in early stages of clinical trials, these classes of 
compounds have emerged in recent years to yield 
extremely promising candidates for drug therapy 
for wide range of diseases, including cancer, AIDS, 
neurological disorders such as Parkinson�s disease and 

Alzheimer�s disease, and cardiovascular disorders[10,11]. 
Elucidation of the human genome has also provided a 
major impetus in identifying human genes implicated 
in diseases, which may eventually lead to the 
development of DNA and RNA based drugs for gene 
replacement or potential targets for gene ablation[12]. 
The Human Genome project will help determine 
genetic markers responsible for patient response 
to drug therapy, drug interactions, and potential 
side effects[13]. Developments in human genomics, 
transcriptomics, and proteomics will provide an 
additional impetus for the advancement of DNA 
based therapeutics by supplying novel targets for 
drug design, screening, and selection. In this review, 
we summarize DNA-based therapeutics, gene transfer 
technologies, current status of gene therapy and recent 
developments in gene therapy research.

DNA- BASED THERAPEUTICS

Plasmids:
Plasmids are high molecular weight, double stranded 
DNA constructs containing transgenes, which encode 
specific proteins. On the molecular level, plasmid 
DNA molecules can be considered pro-drugs that 
upon cellular internalization employ the DNA 
transcription and translation apparatus in the cell to 
biosynthesize the therapeutic entity, the protein[14]. 
The mechanism of action of plasmid DNA requires 
that the plasmid molecules gain access into the 
nucleus after entering the cytoplasm. Nuclear access 
or lack thereof eventually controls the efÞ ciency of 
gene expression. In addition to disease treatment, 
plasmids can be used as DNA vaccines for genetic 
immunization[15]. In the early stages of development, 
plasmid-based gene therapy was attempted to correct 
inheritable disorders resulting from a single gene 
defect.  The first federally approved human gene 
therapy protocol was initiated in 1990 for the 
treatment of adenosine deaminase deficiency[16]. 
Since then, more than 500 gene therapy protocols 
have been approved or implemented[17]. In 2002, 
scientists reported the successful gene-therapy-
based cure for severe combined immunodeficiency 
(SCID)[18]. In 2003, the Chinese drug regulatory 
agency approved the first gene therapy product for 
head and neck squamous carcinoma under the trade 
name Gendicine[19]. Currently, diseases with complex 
etiologies such as cancer[20-21] and neurodegenerative 
disorders such as Alzheimer�s disease and Parkinson�s 
disease[22] are being targeted. In addition, DNA 
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vaccines for malaria, AIDS, and many other diseases 
are in development[23]. DNA vaccines have also been 
used to prevent allergic response[24].

Oligonucleotides:
Oligonucleotides are short single-stranded segments 
of DNA that upon cellular internalization can 
selectively inhibit the expression of a single protein. 
For antisense applications, oligonucleotides interact 
and form a duplex with the mRNA or the pre-
mRNA and inhibit their translation or processing, 
consequently inhibiting protein biosynthesis. For 
antigene applications, oligonucleotides must enter the 
cell nucleus; form a triplex with the double- stranded 
genomic DNA, and inhibits the translation as well 
as the transcription process of the protein. On the 
molecular level, numerous mechanisms have been 
proposed to explain the basis of oligonucleotide 
action[25-27]. For therapeutic purposes, oligonucleotides 
can be used to selectively block the expression of 
proteins that are implicated in diseases[28]. With 
successful antisense inhibition of proteins in animal 
models, the Þ rst antisense drug, fomivirsen sodium 
(Vitravene, Isis Pharmaceuticals, Carlsbad, CA) 
was approved for the treatment of cytomegalovirus 
retinitis in AIDS patients in 1998[29]. Antisense 
oligonucleotides such as MG98 and ISIS 5132, 
designed to inhibit the biosynthesis of DNA 
methyltransferase and c-raf kinase, respectively, 
are in human clinical trials for cancer[30]. Synthetic 
antisense DNA oligonucleotides and oligonucleotide 
analogs[31], which inhibit the replication of several 
infectious agents such as hepatitis C virus[32], human 
cytomegalovirus[33], human immunodeficiency virus 
and papilloma virus[34-43], have also been designed. 

Aptamers: 
DNA-Aptamers are double-stranded nucleic acid 
segments that can directly interact with proteins[10]. 
Aptamers interfere with the molecular functions of 
disease-implicated proteins or those that participate in 
the transcription or translation processes. Aptamers are 
preferred over antibodies in protein inhibition owing 
to their speciÞ city, non-immunogenicity, and stability 
of pharmaceutical formulation[44]. DNA-aptamers 
that have demonstrated promise in intervention of 
pathogenic protein biosynthesis are HIV-1 integrase 
enzyme[45].

DNAzymes: 
DNAzymes are analogs of ribozymes with greater 

biological stability[28]. The RNA backbone chemistry 
is replaced by the DNA motifs that confer improved 
biological stability. DNAzyme directed against the 
vascular endothelial growth factor receptor 2 was 
confirmed to be capable of tumor suppression by 
blocking angiogenesis upon intratumoral injections in 
mice[46].

GENE TRANSFER TECHNOLOGIES

Gene transfer technologies or DNA delivery methods 
can be classified into 3 general types; electrical 
techniques, mechanical transfection, and vector 
assisted delivery systems. 

Mechanical and electrical techniques: 
Mechanical and electrical strategies of introducing 
naked DNA into cells include microinjection, particle 
bombardment, the use of pressure, and electroporation. 
Microinjection is highly efficient since one cell at 
a time is targeted for DNA transfer; however, this 
precision is achieved at the expense of time. Ballistic 
transfer of gold micro-particles can be achieved 
using particle bombardment equipment such as the 
gene gun. Electroporation uses high-voltage electrical 
current to facilitate DNA transfer. This technique 
results in high cell mortality and therefore is not 
suitable for clinical use[47-50]. 

Vector-assisted delivery systems: 
Vector-assisted DNA/gene delivery systems can 
be classified into 2 types based on their origin; 
biological viral DNA delivery systems and chemical 
nonviral delivery systems. In viral delivery systems, 
nonpathogenic attenuated viruses can be used as 
delivery systems for genes/DNA molecules; especially 
plasmids[51-53]. These viral DNA-delivery vectors 
include both RNA and DNA viruses. The viruses 
used as gene therapy vectors can be classified 
into 4 types; retroviruses[54], adenoviruses, adeno-
associated viruses[55] and Herpes simplex viruses. 
Gene expression using viral vectors has been achieved 
with high transfection efficiencies in tissues such 
as kidney[56], heart muscle[57], eye[55], and ovary[58]. 
Viruses are currently used in more than 70% of 
human clinical gene therapy trials world-wide[59]. Gene 
therapy using viral systems has made considerable 
progress for the treatment of a wide range of 
diseases, such as muscular dystrophy[57], AIDS[60], 
and cancer[61]. The only approved gene therapy 
treatment (Gendicine) delivers the transgene using a 
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recombinant adenoviral vector[20]. DNA delivery using 
viral vectors has been extensively reviewed[52,53,62]. 
The first-generation retroviral vectors were largely 
derived from oncoretroviruses, such as the Maloney 
murine leukemia virus (MMuLv), and were unable to 
transfer genes into non-dividing cells[63,64]. This limited 
the potential for their application as a delivery system 
in gene therapy. The utilization of the lentivirus 
family of retroviruses has overcome this shortcoming. 
Lentiviruses, which include Human immunodeÞ ciency 
virus type1 (HIV-1), bovine immunodeÞ ciency virus 
(BIV), feline immunodeficiency virus (FIV) and 
simian immunodeficiency virus (SIV), are able to 
transfer genes to non-dividing cells[64,65]. 

Retroviral vectors used in gene therapy are replication 
deficient, such that they are unable to replicate in 
the host cell and can infect only one cell[66,67]. This 
characteristic, although essential for the safety of viral 
vectors in gene therapy, imposes restrictions on the 
amounts of virus that can safely be administered[68,69]. 
Retroviral-mediated delivery of therapeutic DNA 
has been widely used in clinical gene therapy 
protocols, including the treatment of cancers, such 
as melanoma[70] and ovarian cancer[71], adenosine 
deaminase deficiency-severe combined immune 
deÞ ciency (ADA-SCID)[72,73] and Goucher�s disease[74]. 
Retroviral vectors are capable of transfecting high 
populations (45-95%) of primary human endothelial 
and smooth muscle cells, a class of cells that are 
generally extremely difÞ cult to transfer[75]. 

Adenoviruses have been used to deliver therapeutic 
DNA to patients suffering from metastatic breast, 
ovarian and melanoma cancers[76-78]. Indeed, the 
severe immune response of the host contributes to 
the limited survival of the adenoviral DNA in the 
targeted cells and results in a transient expression 
of the therapeutic gene since the adenoviral DNA 
is lost over time[79-83]. First- generation adenoviral 
vectors were able to accommodate the introduction of 
therapeutic genes over 7 Kb long (but rarely larger) 
into targeted cells[84]. However, the generation of 
gutless adenoviral vectors, which lack all viral genes, 
has facilitated adenoviral delivery of up to 30 Kb 
of a therapeutic DNA sequence[85-88] with decreased 
toxicity[89]. Adenoviral-mediated gene transfer in COS-
7 cells was signiÞ cantly higher than that achieved by 
liposomal delivery systems[90]. 

The use of adeno-associated viral (AAV) vectors 

provides an alternative to adenoviral vectors for 
gene therapy and a means for long-term gene 
expression with a reduced risk of adverse reactions 
upon administration of the vector[91,92]. AAV viruses 
are linear, single stranded DNA parvoviruses that 
are not associated with any disease in humans[93]. In 
humans, the site of AAV viral DNA integration is 
on chromosome 19[94,95]. In the engineering of AAV 
vectors, most of the AAV genome can be replaced 
with the therapeutic gene[96], which significantly 
reduces potential adverse responses of the host to 
viral infection. However, the size of the therapeutic 
gene is limited to approximately 5 Kb[97,98]. First 
generation adeno-associated viruses had a very 
small capacity of ~4.7 Kb for encapsulation of the 
plasmid DNA cargo. Recent reports demonstrate 
efÞ cient production of second-generation AAV with 
higher encapsulating capabilities[99]. It has been 
demonstrated that adenoviruses in formulations may 
lose their potency after storage in commonly used 
pharmaceutical vials[100]. 

Herpes simplex virus (HSV) vector is a large and 
relatively complex enveloped, double-stranded DNA 
virus that has the capacity to encode large therapeutic 
genes and, like AAV, can remain latent in infected 
cells providing the potential for long term expression 
of the therapeutic gene[101]. Although, able to infect 
many cell types, HSV vectors currently are limited in 
their use by vector toxicity[102].

Non-viral delivery systems have the greatest 
advantage over viral delivery systems is the lack 
of immune response and ease of formulation and 
assembly. Commonly used non-viral vectors for 
delivery of DNA-based therapeutics can be classiÞ ed 
into 3 major types; Naked DNA delivery systems, 
polymeric delivery systems, and liposomal delivery 
systems[30,103-105]. 

Naked DNA can be administered via two possible 
routes, either by ex vivo delivery or by in vivo 
delivery. The ex vivo method of naked DNA delivery 
has been used successfully for the introduction of 
DNA into endothelial and smooth muscle cells[106,107], 
its reliance on the culture of harvested cells renders 
it unsuitable for many cell types. In vivo delivery of 
naked DNA was Þ rst described in 1990[108]. EfÞ ciency 
of the delivery of naked DNA can be improved when 
administered in a pressure-mediated fashion[107,109]. 
Particle bombardment technology enables the localized 
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delivery of DNA readily into skin or muscle[110]. 
Another technique for delivery of naked DNA directly 
into target cells is electroporation. The successful 
delivery of DNA by electroporation in vivo has been 
reported in tissues such as skin and muscle[111-114].

In polymeric delivery systems, cationic polymers 
are used in gene delivery because they can easily 
complex with the anionic DNA molecules[115]. The 
mechanism of action of these polycomplexes is 
based on the generation of a positively charged 
complex owing to electrostatic interaction of 
these cationic polymers with anionic DNA[48]. 
Commonly used polymers include polyethylenimine 
(PEI)[116], poly-L-lysine (PLL)[117], chitosans[118], and 
dendrimers[30]. Agents such as folates, transferin, 
antibodies, or sugars such as galactose and 
mannose can be incorporated for tissue targeting[30]. 
Synthetic polymers such as protective interactive 
non-condensing polymers (PINC), poly-L-lysine, 
cationic polymers and dendrimers offer an alternative 
to cationic lipids as a vehicle for DNA delivery 
into target cells[119-123]. Encapsulation of a DNA 
molecule or even a therapeutic viral vector within 
a biodegradable polymer has been demonstrated 
to permit the controlled release of the DNA in a 
targeted cell over a period of weeks or months[124,125]. 
The inclusion of proteins and peptides in the DNA 
complex that are recognized by receptors on targeted 
cells has led to an improvement in the efÞ ciency of 
DNA uptake in several instances[126]. Some polymers 
have inherent potent pharmacological properties (such 
as hypercholesterolemia-induced by chitosans) that 
make them extremely unfavorable for human use[127].

Liposomes are one of the most versatile tools for the 
delivery of DNA therapeutics[28,103,104,128]. Liposome 
and drug/lipid complexes have been used for the 
delivery of the anticancer drugs doxorubicin and 
daunorubicin[129]. Liposomes can be used as DNA drug 
delivery systems either by entrapping the DNA-based 
therapeutics inside the aqueous core or complexing 
them to the phospholipids lamellae. Liposome can 
also be used for specialized gene delivery options 
that include long circulation half-life, sustained and 
targeted delivery[103]. 

Numerous studies have demonstrated the use of 
cationic liposomal formulations for the delivery of 
different plasmid constructs in a wide range of cells, 
both in vivo and in vitro[130]. The use of cationic 

lipids to transfer DNA into cells was Þ rst described 
as an in vitro method of DNA delivery[131]. Cationic 
liposomes have also been used in clinical trials to 
deliver therapeutic DNA[132-136]. Cationic liposomal 
formulations consist of mixtures of cationic and 
zwitterionic lipids[128,137,138]. Proprietary formulations 
of cationic lipids such as lipofectamine (Invitrogen, 
Carlsbad, CA), effectene (Qiagen, Valencia, CA), and 
tranfectam (Promega, Medison, WI) are commercially 
available[139], but most of the kits are useful only 
for in vitro experimentation. There are reports of 
improved efficiency of DNA delivery by cationic 
lipid via the coupling of specific receptor ligands 
or peptides to DNA/liposome complexes[126,140-143]. 
Cytotoxicity of cationic lipids has been established in 
numerous in vitro[144,145] and in vivo[146-148] studies. Low 
transfection efÞ ciencies have been attributed to the 
heterogeneity and instability of cationic lipoplexes[149]. 
Another drawback in the use of cationic lipids is their 
rapid inactivation in the presence of serum[138,150]. 
Some in vivo studies have revealed that the gene 
transduction responses obtained by cationic lipoisomes 
were transient and short-lived[151,152]. 

As an alternative to cationic lipids, the potential of 
anionic lipids for DNA delivery has been investigated. 
The safety of anionic lipids has been demonstrated 
when administered to epithelial lung tissue. In recent 
years, a few studies, using anionic liposomal DNA 
delivery vectors have been reported. There have 
been attempts to incorporate anionic liposomes 
into polymeric delivery systems. However, these 
vectors have limited applications, mainly because 
of (1) inefficient entrapment of DNA molecules 
within anionic liposomes and (2) lack of toxicity 
data. Lack of further progress of these systems 
may be attributed, in part, to the poor association 
between DNA molecules and anionic lipids, caused 
by electrostatic repulsion between these negatively 
charged species[145,146,153-160]. 

Along with numerous cationic and anionic lipid 
derivatives, functionalized liposomal formulations 
serving specific therapeutic objectives have shown 
promise in gene therapy[103,161,162]. Specialized 
liposomal delivery platforms include pH-sensitive 
liposomes, immunoliposomes, and stealth liposomes. 
pH-Sensitive Liposomes can be generated by the 
inclusion of 1,2-dioleoyl-3-phosphoethanolamine 
(DOPE) into liposomes composed of acidic lipids 
such as cholesterylhemisuccinate or oleic acid. 
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At the neutral cellular pH 7, these lipids have the 
typical bilayer structure; however, upon endosomal 
compartmentalization they undergo protonation and 
collapse into a nonbilayer structure, thereby leading 
to the disruption and destabilization of the endosomal 
bilayer, which in turn helps in the rapid release of 
DNA into the cytoplasm[161]. EfÞ cient gene delivery 
of the beta-galactosidase and luciferase reporter 
plasmids has been obtained using pH-sensitive 
liposomes in a variety of mammalian cell lines[163]. 
A chemical derivative of DOPE, Citraconyl-DOPE, 
has been used to deliver DNA-based therapeutics 
to cancer cells, thereby combining the targeting and 
the rapid endosome-releasing aspects of specialized 
liposomal delivery systems[164]. A phosphatidylcholine/
glycyrrhizin combination was also successful in pH-
sensitive gene delivery in mice[165]. Immunoliposomes 
are sophisticated gene delivery systems that can 
be used for cell targeting by the incorporation of 
functionalized antibodies attached to lipid bilayers[162]. 
Immunoliposomes containing an antibody fragment 
against the human transferring receptor were 
successfully used in targeted delivery of tumor-
suppressing genes into tumors in vivo[166]. Tissue-
specific gene delivery using immunoliposomes has 
been achieved in the brain[167], embryonic tissue[168], 
and breast cancer tissue[169]. Stealth liposomes are 
sterically stabilized liposomal formulations that 
include polyethylene glycol (PEG)-conjugated 
lipids[103].  

CURRENT STATUS OF GENE THERAPY 
RESEARCH

Current gene therapy is experimental and has not 
proven very successful in clinical trials. Little 
progress has been made since the Þ rst gene therapy 
clinical trial began in 1990. In 1999, gene therapy 
suffered a major setback with the death of 18-year-old 
Jesse Gelsinger. Another major blow came in January 
2003, when the FDA placed a temporary halt on all 
gene therapy trials using retroviral vectors in blood 
stem cells. FDA took this action after it learned 
that a second child treated in a French gene therapy 
trial had developed a leukemia-like condition. Both 
this child and another who had developed a similar 
condition in August 2002 had been successfully 
treated by gene therapy for X-linked severe combined 
immunodeÞ ciency disease (X-SCID), also known as 
"bubble baby syndrome".  

FDA's Biological Response Modifiers Advisory 
Committee (BRMAC) met at the end of February 
2003 to discuss possible measures that could allow 
a number of retroviral gene therapy trials for 
treatment of life-threatening diseases to proceed with 
appropriate safeguards. In April of 2003 the FDA 
eased the ban on gene therapy trials using retroviral 
vectors in blood stem cells.

RECENT DEVELOPMENTS IN GENE 
THERAPY

Nanotechnology and gene therapy yields treatment 
to torpedo cancer (March, 2009); The School of 
Pharmacy in London is testing a treatment in mice, 
which delivers genes wrapped in nanoparticles to 
cancer cells to target and destroy hard-to-reach 
cancer cells[170]. Results of world's Þ rst gene therapy 
for inherited blindness show sight improvement 
(April, 2008); UK researchers from the UCL Institute 
of Ophthalmology and Moorefield�s Eye Hospital 
NIHR Biomedical Research Centre have announced 
results from the world�s first clinical trial to test a 
revolutionary gene therapy treatment for a type of 
inherited blindness. The results, published in the 
New England Journal of Medicine, show that the 
experimental treatment is safe and can improve 
sight. The Þ ndings are a landmark for gene therapy 
technology and could have a significant impact on 
future treatments for eye disease[171,172]. 

Previous information on this trial (May 1, 2007); A 
team of British doctors from MoorÞ elds Eye Hospital 
and University College in London conduct first 
human gene therapy trials to treat Leber's congenital 
amaurosis, a type of inherited childhood blindness 
caused by a single abnormal gene. The procedure 
has already been successful at restoring vision for 
dogs. This is the Þ rst trial to use gene therapy in an 
operation to treat blindness in humans[173].

A combination of two tumor suppressing genes 
delivered in lipid-based nanoparticles drastically 
reduces the number and size of human lung cancer 
tumors in mice during trials conducted in The 
University of Texas M. D. Anderson Cancer Center 
and the University of Texas Southwestern Medical 
Center[174]. Researchers at the National Cancer 
Institute (NCI), part of the National Institutes of 
Health, successfully reengineer immune cells, called 
lymphocytes, to target and attack cancer cells in 
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patients with advanced metastatic melanoma. This is 
the Þ rst time that gene therapy is used to successfully 
treat cancer in humans[175].

Gene therapy is effectively used to treat two adult 
patients for a disease affecting nonlymphocytic white 
blood cells called myeloid cells. Myeloid disorders 
are common and include a variety of bone marrow 
failure syndromes, such as acute myeloid leukemia. 
The study is the Þ rst to show that gene therapy can 
cure diseases of the myeloid system (http://www.
cincinnatichildrens.org/March 31, 2006). A research 
team at the University of California, Los Angeles is 
able to transport genes into the brain using liposomes 
coated with polyethylene glycol. The transfer of genes 
into the brain is a significant achievement because 
viral vectors are too big to get across the blood-
brain barrier. This method has potential for treating 
Parkinson's disease[176].

RNA interference or gene silencing may be a new 
way to treat Huntington's. Short pieces of double-
stranded RNA (short, interfering RNAs or siRNAs) 
are used by cells to degrade RNA of a particular 
sequence. If a siRNA is designed to match the RNA 
copied from a faulty gene, then the abnormal protein 
product of that gene will not be produced[177]. New 
gene therapy approach repairs errors in messenger 
RNA derived from defective genes. Technique has 
potential to treat the blood disorder thalassaemia, 
cystic Þ brosis, and some cancers[178]. Gene therapy for 
treating children with X-SCID (bubble boy) disease 
is stopped in France when the treatment resulted in 
leukemia in one of the patients[179]. Researchers at 
Case Western Reserve University and Copernicus 
Therapeutics are able to create tiny liposomes 25 
nanometers across that can carry therapeutic DNA 
through pores in the nuclear membrane[180]. Sickle cell 
is successfully treated in mice[181].
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