Effects of Tribuloside on Apoptosis and Oxidative Damage of H$_2$O$_2$ Treated Human Lens Epithelial Cells via Mediating microRNA-335-3p/KLF6 Axis

Y. ZHAO*, XIAN LIU1,2 AND Q. LIU1,2

Department of Ophthalmology, 1Department of Corneal Transplantation, Affiliated Eye Hospital of Nanchang University, 2Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi Province 330000, China

Accepted 29 September 2023
Revised 29 November 2022
Received 02 March 2022

Indian J Pharm Sci 2023;85(5):1504-1511

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Cataract is a common disease with the highest incidence of impaired vision in the elderly, as the primary cause of blindness in the worldwide. Although patients can see again after cataract extraction and intraocular lens implantation, there are still risks of wound leakage, corneal abrasions and high eye pressure[1]. Reactive Oxygen Species (ROS)-caused oxidative stress is the main factor leading to the occurrence of cataract. Oxidative...
damage can activate a variety of signaling pathways such as caspases, and induce lens epithelial cell apoptosis to result in lens opacity and cataract occurrence\cite{2,3}. Thus, protecting lens epithelial cells against apoptosis and oxidative damage is an important strategy to delay cataract formation.

Tribuloside is the main active ingredient of *Tribulus terrestris* L. with anti-cancer, anti-aging, hypotensive, and hypolipidemic biological activities\cite{4}. It has been reported that tribuloside might reduce Hydrogen peroxide (H$_2$O$_2$)-induced oxidative damage of PC12 cells by stabilizing mitochondrial membrane potential and inhibiting cell apoptosis\cite{5}. Tribuloside was shown to enhance survival rate and cell growth of rat retinal ganglion cells *in vitro*\cite{6}. However, the effects of tribuloside on lens epithelial cells in cataract are still unknown.

MicroRNAs (miRNAs) exhibit the regulatory roles in eye diseases by messenger Ribonucleic Acid (mRNA) degradation\cite{7}. The previous study has demonstrated that miR-335-3p was associated with nuclear opacity grade of lens in nuclear cataract patients, and it could be a key factor involved in oxidative damage of lens epithelial cells\cite{8}. Kriippel-Like Factor 6 (KLF6) was reported to aggravate UV-B-induced apoptosis of lens epithelial cells *via* inducing ROS accumulation\cite{9}. Target relation between miR-335-3p and KLF6 remains to be investigated.

Herein, this study was performed for investigating the functional mechanism of tribuloside in H$_2$O$_2$-induced cataract cell model with miR-335-3p/KLF6 axis as the entry point.

MATERIALS AND METHODS

Materials and reagents:

HLE-B3 (Human Lens Epithelial cell line) was provided by American Type Culture Collection (United States of America (USA)). Tribuloside (purity 98 %, batch No. 20191210, a mass concentration of 20 mg/ml mother solution prepared with dimethyl sulfoxide was diluted to the required concentration with culture solution) was purchased from Herbpurify (Chengdu, China). Cell Counting Kit-8 (CCK-8) and miRNA reverse transcription kit were acquired from Vazyme (Nanjing, China). The miRNA fluorescence quantitative detection kit was obtained from Cellregen (Beijing, China). Apoptosis detection kit was bought from Yeasen (Shanghai, China). Malondialdehyde (MDA) content determination kit, Radioimmunoassay (RIPA) buffer, Superoxide Dismutase (SOD) activity kit, Catalase (CAT) activity kit, Bicinchoninic Acid (BCA) protein concentration determination kit were bought from Solarbio (Beijing, China). Luciferase psiCHECK-2 vector, miR-335-3p mimic (miR-335-3p), miR-NC, and miR-335-3p inhibitor (anti-miR-335-3p) were acquired from Ribobio (Guangzhou, China). Murine Glyceraldehyde 3-Phosphatase Dehydrogenase (GAPDH) monoclonal antibody (sc-47724), murine KLF6 monoclonal antibody (sc-134374) and goat anti-mouse IgG secondary antibody (sc-2005) were bought from Santa Cruz (USA).

Cell culture and H$_2$O$_2$ induction:

Cells were cultivated with high-glucose Dulbecco's Modified Eagle Medium (DMEM) medium in a constant temperature (37°) incubator containing 5 % Carbon dioxide (CO$_2$), followed by changing cell medium every day. When cell confluence reached 80 %, cell passage by 1:2 ratio was performed after digestion with trypsin. 5×103 cells at the third generation were inoculated into each well of 96-well plates. After incubation with H$_2$O$_2$ (0, 50, 100, 200, 400 μmol/l) for 24 h\cite{10}, cells were added with 10 μl/well CCK-8 for 2 h and Optical Density (OD) at 450 nm was measured in each well under a microplate reader. According to cell viability, 100 μmol/l H$_2$O$_2$ was selected as the working concentration.

Experimental groups:

Randomly, cells were classified into the different groups. Control group HLE-B3 cells in normal culture. H$_2$O$_2$ group cells with 100 μmol/l H$_2$O$_2$ treatment for 24 h. H$_2$O$_2$+tribuloside 1 μg/ml group, H$_2$O$_2$+tribuloside 3 μg/ml group, or H$_2$O$_2$+tribuloside 10 μg/ml group cells with treatment of 100 μmol/l H$_2$O$_2$ and 1 μg/ml, 3 μg/ml or 10 μg/ml tribuloside for 24 h\cite{5}. H$_2$O$_2$+miR-NC group and H$_2$O$_2$+miR-335-3p group cells with miR-NC or miR-335-3p transfection were exposed to 100 μmol/L H$_2$O$_2$ for 24 h. H$_2$O$_2$+tribuloside+anti-miR-335-3p group, anti-miR-335-3p-transfected cells were performed with 24 h of 100 μmol/L H$_2$O$_2$ incubation. Cell transfection was implemented...
following Lipofectamine 3000, then cells were harvested after 48 h for the further assays.

CCK-8 method for cell viability:

96-well plates were seeded with 5×10^3 cells/well of transfected HLE-B3 cells, miR-NC transfected cells, miR-335-3p or anti-miR-335-3p transfected cells. Subsequently, cells were hatched with H_2O_2 and/or tribuloside for 24 h. After incubation of CCK-8 working solution (10 μl of each well) for 2 h, OD detection was administrated under the microplate reader.

Flow cytometry for cell apoptosis:

Cell concentration was adjusted to 2×10^4 cells/ml by resuspending HLE-B3 cells in 500 μl 1× binding buffer. Cell suspension was pipetted with 5 μl Annexin V-Fluorescein Isothiocyante (FITC) and 5 μl Propidium Iodide (PI) (25°, 15 min) away from light. Apoptotic cells of each group were examined through flow cytometry.

Kits for MDA, CAT and SOD detection:

1×10^6 cells HLE-B3 was added with 1 mL extract solution, and the cells were ruptured by 200 W ultrasound (for 3 s, an interval of 10 s, repetition for 30 times). After centrifugation at ultra-low temperature (10 000 rpm, 10 min), cell supernatant was collected for detecting MDA content, CAT and SOD activities according to manuals of corresponding kits.

RT-qPCR for miR-335-3p expression:

TRiZol reagent was employed for extracting total RNA of each group, followed by reverse transcription into complimentary Deoxyribonucleic Acid (cDNA) via miRNA reverse transcription kit and expression analysis through miRNA fluorescence quantitative detection kit. 2$^{−ΔΔCt}$ method was utilized for miR-335-3p relative expression calculation. The primer sequences were as follows; miR-335-3p, sense 5’-UUUUUUCAUUUAUGCUCCUGACC-3’ and antisense 5’-CCAGTCTCAGGGTGGCAGGTATTC-3’; U6, sense 5’-CTCGCTTCGGCAGCACA-3’ and antisense 5’-AACGCTTCACGAATTTGCGT-3’.

Western blot for KLF6 protein analysis:

The protein samples were extracted employing RIPA buffer and quantified by BCA kit. 40 μg denatured proteins were isolated by Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) (100 V, 90 min) and transferred to PVDF membrane by a wet transmembrane device (20 mA). After sealing with 5 % skim milk, anti-KLF6 (1:200) and endogenous reference anti-GAPDH (1:500) were incubated to membranes at 4° overnight. After 1 h of incubation with the secondary antibody (1:2000), then blots were presented by Chemiluminescence kit. Relative protein expression of KLF6 was represented as KLF6/GAPDH band gray value measured by ImageJ software.

Dual-luciferase reporter assay for miR-335-5p and KLF6 target relation analysis:

TargetScan was utilized for target binding prediction of miR-335-3p and KLF6. Wild-Type (WT) sequence of KLF6 containing miR-335-3p binding region was constructed into psi-CHECK-2 plasmid to generate luciferase reporter vector WT-KLF6. Also, Mutated (MUT) KLF6 sequence containing miR-335-3p binding site was used for MUT-KLF6 construction. Luciferase constructs and miR-335-3p or miR-NC were co-transfected for 48 h, relative luciferase activity examination by dual-luciferase activity system was performed with Renilla luciferase as the internal control.

Statistical analysis:

Experiments were independently administrated for 3 times with 3 repetitions of each group. Data were represented as mean±standard deviation (x±s). For two groups, difference was assessed using independent sample t test. For multiple groups, one-way Analysis of Variance (ANOVA) followed by Tukey test was used for difference analysis. p<0.05 was defined as a significant difference.

RESULTS AND DISCUSSION

HLE-B3 cells were disposed with different concentrations of H_2O_2. Compared with 0 μmol/l group, cell viability was signally reduced in 50, 100, 200 and 400 μmol/l groups (p<0.05), as exhibited in Table 1.

Relative to control group, cell viability, CAT and SOD activities in H_2O_2 group were markedly lessened (p<0.05) but apoptosis rate and MDA level were elevated (p<0.05). HLE-B3 cell activity, CAT
activity and SOD activity of H_2O_2+tribuloside 1 μg/ml group, H_2O_2+tribuloside 3 μg/ml group or H_2O_2+tribuloside 10 μg/ml group were gradually elevated (p<0.05), while apoptotic cells and MDA level were decreased (p<0.05) by comparison with H_2O_2 group, as depicted in fig. 1 and Table 2.

TABLE 1: CELL VIABILITY DETECTION IN DIFFERENT CONCENTRATIONS OF H_2O_2-TREATED HLE-B3 (x±s, n=9)

<table>
<thead>
<tr>
<th>H_2O_2 concentration (μmol/l)</th>
<th>OD value</th>
<th>Apoptosis rate (%)</th>
<th>CAT (U/ml)</th>
<th>MDA (nmol/ml)</th>
<th>SOD (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.27±0.06</td>
<td>6.56±0.23</td>
<td>116.12±6.39</td>
<td>55.03±1.92</td>
<td>170.63±7.56</td>
</tr>
<tr>
<td>50</td>
<td>0.78±0.05</td>
<td>23.30±0.78</td>
<td>32.84±1.16</td>
<td>270.63±9.89</td>
<td>23.46±1.27</td>
</tr>
<tr>
<td>100</td>
<td>0.63±0.04</td>
<td>44.18±2.12</td>
<td>68.02±3.13</td>
<td>153.07±7.74</td>
<td>45.59±1.77</td>
</tr>
<tr>
<td>200</td>
<td>0.37±0.03</td>
<td>222.51±10.02</td>
<td>94.36±4.19</td>
<td>83.73±4.35</td>
<td>150.62±7.82</td>
</tr>
<tr>
<td>400</td>
<td>0.24±0.01</td>
<td>116.12±6.39</td>
<td>153.07±7.74</td>
<td>1321.86</td>
<td>1323.39</td>
</tr>
<tr>
<td>F</td>
<td>837.776</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Contrasted to 0 μmol/l group, *p<0.05; contrasted to 50 μmol/l group, †p<0.05; contrasted to 100 μmol/l group, ‡p<0.05 and contrasted to 200 μmol/l group, §p<0.05

TABLE 2: DETECTION OF VIABILITY, APOPTOSIS AND OXIDATIVE INJURY AFTER H_2O_2 AND TRIBULOSIDE TREATMENT (x±s, n=9)

<table>
<thead>
<tr>
<th>Group</th>
<th>OD value</th>
<th>Apoptosis rate (%)</th>
<th>CAT (U/ml)</th>
<th>MDA (nmol/ml)</th>
<th>SOD (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.26±0.06</td>
<td>6.56±0.23</td>
<td>116.12±6.39</td>
<td>55.03±1.92</td>
<td>170.63±7.56</td>
</tr>
<tr>
<td>H_2O_2</td>
<td>0.58±0.03</td>
<td>23.30±0.78</td>
<td>32.84±1.16</td>
<td>270.63±9.89</td>
<td>23.46±1.27</td>
</tr>
<tr>
<td>H_2O_2+tribuloside 1 μg/ml</td>
<td>0.73±0.04</td>
<td>44.18±2.12</td>
<td>68.02±3.13</td>
<td>153.07±7.74</td>
<td>45.59±1.77</td>
</tr>
<tr>
<td>H_2O_2+tribuloside 3 μg/ml</td>
<td>0.95±0.05</td>
<td>222.51±10.02</td>
<td>94.36±4.19</td>
<td>83.73±4.35</td>
<td>150.62±7.82</td>
</tr>
<tr>
<td>H_2O_2+tribuloside 10 μg/ml</td>
<td>1.16±0.06</td>
<td>116.12±6.39</td>
<td>153.07±7.74</td>
<td>1321.86</td>
<td>1323.39</td>
</tr>
<tr>
<td>F</td>
<td>299.25</td>
<td>1280.29</td>
<td>724.289</td>
<td>1321.86</td>
<td>1323.39</td>
</tr>
<tr>
<td>p</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Note: Relative to control group, *p<0.05; relative to H_2O_2 group, †p<0.05; relative to H_2O_2+tribuloside 1 μg/ml group, ‡p<0.05 and relative to H_2O_2+tribuloside 3 μg/ml group, §p<0.05
Relative to control group, miR-335-3p was down-regulated (p<0.05) and KLF6 protein up-regulation was significant (p<0.05) in H₂O₂ group. Relative to H₂O₂ group, miR-335-3p expression was elevated (p<0.05) and KLF6 protein reduction was induced (p<0.05) in H₂O₂+tribuloside 1 μg/ml group, H₂O₂+tribuloside 3 μg/ml group and H₂O₂+tribuloside 10 μg/ml group, as exhibited in fig. 2 and Table 3.

Target scan analysis showed that KLF6 3′-UTR contained miR-335-3p binding region, as indicated in fig. 3. Significantly, miR-335-3p and WT-KLF6 co-transfection resulted in relative luciferase activity inhibition compared with miR-NC and WT-KLF6 co-transfection (p<0.05). There was no statistical significance in luciferase detection of MUT-KLF6 group with transfection of miR-NC and miR-335-3p, as shown in Table 4.

Contrasted to H₂O₂ group and H₂O₂+miR-NC group, miR-335-3p level was notably increased in H₂O₂+miR-335-3p group (p<0.05). Cell viability, CAT and SOD activities were enhanced (p<0.05), while cell apoptosis, MDA and KLF6 levels were overtly inhibited (p<0.05), as displayed in fig. 4 and Table 5.

Target scan analysis showed that KLF6 3′-UTR contained miR-335-3p binding region, as indicated in fig. 3. Significantly, miR-335-3p and WT-KLF6 co-transfection resulted in relative luciferase activity inhibition compared with miR-NC and WT-KLF6 co-transfection (p<0.05). There was no statistical significance in luciferase detection of MUT-KLF6 group with transfection of miR-NC and miR-335-3p, as shown in Table 4.

Contrasted to H₂O₂ group and H₂O₂+miR-NC group, miR-335-3p level was notably increased in H₂O₂+miR-335-3p group (p<0.05). Cell viability, CAT and SOD activities were enhanced (p<0.05), while cell apoptosis, MDA and KLF6 levels were overtly inhibited (p<0.05), as displayed in fig. 4 and Table 5.

Fig. 2: Effect of tribuloside on KLF6 protein level after H₂O₂ treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>miR-335-3p</th>
<th>KLF6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.00±0.00</td>
<td>0.14±0.01</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>0.17±0.01a</td>
<td>0.79±0.06a</td>
</tr>
<tr>
<td>H₂O₂+tribuloside 1 μg/ml</td>
<td>0.35±0.02b</td>
<td>0.59±0.04c</td>
</tr>
<tr>
<td>H₂O₂+tribuloside 3 μg/ml</td>
<td>0.59±0.04bc</td>
<td>0.38±0.03bc</td>
</tr>
<tr>
<td>H₂O₂+tribuloside 10 μg/ml</td>
<td>0.82±0.05bcd</td>
<td>0.19±0.01bcd</td>
</tr>
<tr>
<td>F</td>
<td>1112.57</td>
<td>533.357</td>
</tr>
<tr>
<td>p</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Note: Contrasted with control group, a p<0.05; contrasted with H₂O₂ group, b p<0.05; contrasted with H₂O₂+tribuloside 1 μg/ml group, c p<0.05 and contrasted with H₂O₂+tribuloside 3 μg/ml group, d p<0.05

Fig. 3: Complementary sequences between miR-335-3p and KLF6
to H$_2$O$_2$, and 100 μmol/l H$_2$O$_2$ was selected as the working concentration when cell viability was close to 50 %. CAT and SOD are important antioxidant enzymes for clearing ROS. Balance breakdown between ROS production and clearance can trigger aberrant apoptosis and oxidative injury of lens epithelial cells, which is associated with the occurrence of cataract[12]. Li et al.[13] reported that tribuloside improved nerve cell injury after experimental cerebral hemorrhage in rats, maybe by the anti-free radical mechanism. Our results demonstrated that induction of H$_2$O$_2$ can enhance cell apoptosis and the level of MDA (the end product of lipid peroxidation), then tribuloside reversed cell damage in a concentration-dependent manner. Tribuloside could enhance cell viability, antioxidative capacity and inhibit apoptosis of HLEB-3 cells, thus protecting from H$_2$O$_2$-induced cell damage.

Compared with H$_2$O$_2$ group, miR-335-3p level, cell viability, CAT and SOD activity in H$_2$O$_2$+tribuloside group were markedly elevated (p<0.05) while apoptotic cells, MDA level and KLFL6 protein level were repressed (p<0.05). Compared with H$_2$O$_2$+tribuloside group, miR-335-3p down-regulation was detected in H$_2$O$_2$+tribuloside+anti-miR-335-3p group (p<0.05). Cell viability, CAT and SOD activities were reduced (p<0.05), whereas cell apoptosis, MDA and KLFL6 levels were enhanced (p<0.05), as indicated in fig. 5 and Table 6.

Oxidative stress induced by ROS, such as H$_2$O$_2$ is considered as a pivotal mediator to result in lens epithelial cell apoptosis in cataract[11]. In this study, H$_2$O$_2$ was employed to mimic oxidative damage in cataract cell model. HLE-B3 cell viability was significantly reduced after exposure to H$_2$O$_2$, and 100 μmol/l H$_2$O$_2$ was selected as the working concentration when cell viability was close to 50 %. CAT and SOD are important antioxidant enzymes for clearing ROS. Balance breakdown between ROS production and clearance can trigger aberrant apoptosis and oxidative injury of lens epithelial cells, which is associated with the occurrence of cataract[12]. Li et al.[13] reported that tribuloside improved nerve cell injury after experimental cerebral hemorrhage in rats, maybe by the anti-free radical mechanism. Our results demonstrated that induction of H$_2$O$_2$ can enhance cell apoptosis and the level of MDA (the end product of lipid peroxidation), then tribuloside reversed cell damage in a concentration-dependent manner. Tribuloside could enhance cell viability, antioxidative capacity and inhibit apoptosis of HLEB-3 cells, thus protecting from H$_2$O$_2$-induced cell damage.
oxidative injury. Therefore, miR-335-3p worked as protective factor in cell model of cataract. KLF6 is an anti-tumor gene implicated in cell proliferation and apoptosis[21]. A pervious study manifested that KLF6 overexpression inhibited proliferation ability of rat lens epithelial cells[22]. KLF6 was affirmed to promote UV-induced apoptosis by triggering endoplasmic reticulum stress in lens epithelial cells[23]. Moreover, miR-181 enhanced retinal endothelial cell migration in diabetic retinopathy through binding to KLF6[24]. miR-124-3p significantly weakened H$_2$O$_2$-aroused apoptosis acceleration and viability inhibition via the targeted regulation of KLF6 in HLE-B3 cells[25]. Yin et al.[26] found that miR-22-3p mediated cell apoptosis through down-regulating KLF6 in diabetic cataract. Herein, it was found that KLF6 protein expression was up-regulated after H$_2$O$_2$ treatment. More importantly, miR-335-3p directly interacted with KLF6, and the promoting regulation of H$_2$O$_2$ in KLF6 was neutralized. Anti-apoptotic and anti-oxidative influences of tribuloside and miR-335-3p were consistent, suggesting that miR-335-3p and downstream target might mediate the protective effect of tribuloside.

Further studies manifested that miR-335-3p level suppression impaired the protective influence of tribuloside on H$_2$O$_2$-induced HLE-B3 cell damage.

The short miRNAs can induce target gene down-regulation by acting on the 3'-UTR of mRNAs, consequently participating in the various kinds of biological processes[14]. Research evidence showed that miRNA expression was changed after oxidative stress was induced in lens epithelial cells[15]. H$_2$O$_2$ treatment down-regulated miR-182-5p in HLE-B3 cells, and miR-182-5p level increase protected against cell damage induced by H$_2$O$_2$ through directly targeting NOX4[16]. Wang et al. stated that miR-34a-5p restrained oxidative stress by reducing GPX3 in lens epithelial cells[17]. miR-23a-3p regulated lens epithelial cell proliferation and apoptosis through degrading Bcl-2 level[18]. Reduction of miR-335-3p level was associated with ischemic neuronal injury, and circTLK1 knockdown ameliorated neuronal injury induced by glucose and oxygen deprivation/reoxygenation via up-regulating miR-335-3p[19]. Through inhibiting the expression of ATG3 (an autophagy-related gene), miR-335-3p could suppresses retinal ganglionic cell apoptosis to prevent the progression of glaucoma[20]. Consistent with the results of previous studies, this study affirmed the significantly down-regulation of miR-335-3p after H$_2$O$_2$ treatment in HLE-B3 cells. In addition, miR-335-3p overexpression enhanced cell viability and abated H$_2$O$_2$-induced apoptosis and oxidative injury. Therefore, miR-335-3p worked as protective factor in cell model of cataract.

KLF6 is an anti-tumor gene implicated in cell proliferation and apoptosis[21]. A pervious study manifested that KLF6 overexpression inhibited proliferation ability of rat lens epithelial cells[22]. KLF6 was affirmed to promote UV-induced apoptosis by triggering endoplasmic reticulum stress in lens epithelial cells[23]. Moreover, miR-181 enhanced retinal endothelial cell migration in diabetic retinopathy through binding to KLF6[24]. miR-124-3p significantly weakened H$_2$O$_2$-aroused apoptosis acceleration and viability inhibition via the targeted regulation of KLF6 in HLE-B3 cells[25]. Yin et al.[26] found that miR-22-3p mediated cell apoptosis through down-regulating KLF6 in diabetic cataract. Herein, it was found that KLF6 protein expression was up-regulated after H$_2$O$_2$ treatment. More importantly, miR-335-3p directly interacted with KLF6, and the promoting regulation of H$_2$O$_2$ in KLF6 was neutralized. Anti-apoptotic and anti-oxidative influences of tribuloside and miR-335-3p were consistent, suggesting that miR-335-3p and downstream target might mediate the protective effect of tribuloside. Further studies manifested that miR-335-3p level suppression impaired the protective influence of tribuloside on H$_2$O$_2$-induced HLE-B3 cell damage.

Table 6: Down-Regulation of miR-335-3p Restored the Influences of Tribuloside on Cell Activity, Apoptosis and Oxidative Stress of H$_2$O$_2$-Induced HLE-B3 Cells ($\pm s$, n=9)

<table>
<thead>
<tr>
<th>Group</th>
<th>miR-335-3p</th>
<th>KLF6</th>
<th>OD value</th>
<th>Apoptosis rate (%)</th>
<th>CAT (U/ml)</th>
<th>MDA (nmol/ml)</th>
<th>SOD (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2O_2</td>
<td>1.00±0.00</td>
<td>0.77±0.07</td>
<td>0.60±0.04</td>
<td>23.36±0.96</td>
<td>32.89±0.97</td>
<td>273.87±15.29</td>
<td>23.52±1.14</td>
</tr>
<tr>
<td>H_2O_2+tribuloside</td>
<td>4.85±0.29a</td>
<td>0.19±0.02</td>
<td>1.18±0.05a</td>
<td>11.72±0.51a</td>
<td>95.24±5.21a</td>
<td>83.56±4.76a</td>
<td>150.89±9.57a</td>
</tr>
<tr>
<td>H_2O_2+tribuloside+anti-miR-335-3p</td>
<td>1.53±0.11b</td>
<td>0.61±0.04b</td>
<td>0.70±0.05b</td>
<td>20.40±0.86b</td>
<td>42.03±3.27b</td>
<td>233.18±10.53b</td>
<td>35.47±3.21b</td>
</tr>
<tr>
<td>F</td>
<td>1222.101</td>
<td>351.130</td>
<td>393.273</td>
<td>514.324</td>
<td>789.384</td>
<td>1549.234</td>
<td>1294.665</td>
</tr>
</tbody>
</table>

Note: Relative to H_2O_2 group, ap<0.05 and relative to H_2O_2+tribuloside+anti-miR-335-3p group, bp<0.05.
and up-regulated KLF6 protein level. Therefore, the regulatory role of tribuloside in H$_2$O$_2$-induced cell damage was achieved partly by miR-335-3p/KLF6 axis.

In summary, this study confirmed that tribuloside could attenuate apoptosis and oxidative damage in H$_2$O$_2$-induced cataract cell model through regulating miR-335-3p/KLF6 axis. These evidences provide important evidence for the development of tribuloside in treatment of cataract, and discover the potential effective target for the treatment of cataract.

Conflict of interests:
The authors declared no conflict of interests.

REFERENCES