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Huang et al.: Effect of Panax notoginseng on Osteoarthritis Chondrocytes

Panax notoginseng saponins are often used to treat a frequently of inflammatory diseases, but the underlying 
mechanisms of their effects on human osteoarthritis are limited. An osteoarthritis model was established 
by interleukin-1 beta treatment of chondrocytes for experiments. During the experiment, cell activity 
was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide method. The enzyme-
linked immunosorbent assay was applied to measure tumour necrosis factor alpha and interleukin-6 level, 
malondialdehyde content, superoxide dismutase activity, glutathione peroxidase activity in each group. 
Toll-like receptor 4 and myeloid differentiation factor 88 protein expression level was measured using 
Western blot. In this study, compared to the control group, the cell viability and the activity of superoxide 
dismutase and glutathione peroxidase in interleukin-1 beta group were notably reduced, while the content 
of malondialdehyde, interleukin-6 and tumour necrosis factor alpha, as well as the protein expression of toll-
like receptor 4 and myeloid differentiation factor 88 were sharply increased. Compared with interleukin-1 
beta group, cell viability, superoxide dismutase activity, glutathione peroxidase activity, malondialdehyde 
content were higher, whereas interleukin-6 and tumour necrosis factor alpha content and toll-like receptor 
4 and myeloid differentiation factor 88 expression were lower in interleukin-1 beta+Panax notoginseng 
saponin groups. Moreover, relative to interleukin-1 beta+Panax notoginseng saponin-H+vector group, toll-
like receptor 4 level and malondialdehyde, interleukin-6 and tumour necrosis factor alpha content were 
significantly increased, while cell activity, superoxide dismutase activity, glutathione peroxidase activity were 
considerably lowered in interleukin-1 beta+Panax notoginseng saponin H+toll-like receptor 4 group. Panax 
notoginseng saponins promoted interleukin-1 beta-stimulated osteoarthritis chondrocyte proliferation and 
inhibited cell oxidative damage and inflammatory response by modulating the toll-like receptor 4/myeloid 
differentiation factor 88 axis.
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inflammatory response

In clinical orthopedics, Osteoarthritis (OA) is a 
common degenerative osteoarticular inflammatory 
disease that affects people in middle-aged and 
elderly people. Factors such as heredity, joint 
injury and joint deformation can induce arthritis[1]. 
Most studies have shown that oxidative damage 
and inflammatory reaction of chondrocytes are 
the main pathological mechanisms of OA[2,3]. 
Traditional Chinese medicine is an essential 
tool in the treatment of OA[4]. The components 
of traditional Chinese medicine can effectively 
alleviate the symptoms of OA, such as Angelica 

sinensis[5] and Panax notoginseng saponins (PNS)
[6], but the relevant regulatory mechanism research 
is very limited. 

PNS is usually used in treatment of central 
nervous system diseases, cardiovascular and 
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cerebrovascular diseases, and a variety of 
inflammatory diseases[7-9]. For instance, PNS 
not only protected the heart in acute myocardial 
infarction and heart failure by inducing autophagy, 
but also enhanced platelet inhibition by regulating 
arachidonic acid metabolism in combination 
with aspirin to reduce stomach injury in gastric 
mucosa[10,11]. Moreover, the application of PNS can 
counteract the effects of adenine in chronic kidney 
disease and restore the level of inflammatory 
factors in laboratory mice to the level of healthy 
mice, mainly by regulating intestinal micro biota 
microorganisms and inhibiting pro-inflammatory 
proteins[12]. Therefore, PNS relieves the symptoms 
of the disease via hindering inflammation. 
Meanwhile, the important role of PNS in OA is 
also reported. Zhang et al.[6], discovered that 
PNS could effectively repress the chondrocytes 
senescence and apoptosis in OA via modulating 
the Phosphatidylinositol-3-Kinase (PI3K)-
Protein Kinase B (AKT)-mammalian Target of 
Rapamycin (mTOR) axis, however, there are 
relatively few reports on the research mechanism 
of oxidative damage and inflammation in human 
OA chondrocytes.

As a classical inflammatory pathway, Toll-Like 
Receptor 4 (TLR4)/Myeloid Differentiation Factor 
88 (MyD88) pathway is strongly associated with 
OA pathogenesis[13]. For example, improving 
Fat-mass and Obesity-associated gene (FTO) 
expression successfully relieved symptom of OA 
by controlling the TLR4/MyD88/Nuclear Factor 
Kappa B (NF-κB) signal pathway[14]. Here, this 
project looked into the potential mechanism of PNS 
influencing chondrocyte injury in OA triggered 
by Interleukin-1 beta (IL-1β) and hypothesized 
that TLR4/MyD88 signaling pathway might be 
involved.

MATERIALS AND METHODS

Reagents and antibodies: 

Trypsin, collagenase, Bicinchoninic Acid (BCA) 
kit and electrochemiluminescence solution were 
purchased from Beijing Solebo Bio. Fetal Bovine 
Serum (FBS) and Dulbecco’s Modified Eagle 
Medium (DMEM) were provided by Hyclone 
Company (United States of America (USA)). Nanjing 
Zelang Medical Technology Co., Ltd provided 
PNS to treat cells. Sigma Company (USA) offered 
IL-1β. Empty vector and overexpressed TLR4 

were purchased from Shanghai Jima Company. 
Lipofectamine 2000 transfection kit was obtained 
from Invitrogen (USA). 3-(4,5-Dimethylthiazol-2-
yl)-2,5 Diphenyl Tetrazolium Bromide (MTT) kit 
was obtained from Shanghai Jingkang Biological 
Engineering Co., Ltd. Nanjing Jiancheng Biological 
Research Institute provided the Superoxide 
Dismutase (SOD) kit, Glutathione Peroxidase (GSh-
Px) kit, Malondialdehyde (MDA) kit, IL-6 kit and 
Tumor Necrosis Factor Alpha (TNF-α) kit. The 
primary antibodies anti-TLR4, anti-MyD88 and 
anti-glyceraldehyde 3-phosphate dehydrogenase 
were acquired from Abcam (USA). Secondary 
antibodies horseradish peroxidase-labeled goat anti-
Immunoglobulin G (IgG) was obtained from Beijing 
Biolaibo Technology Co., Ltd.

Cell culture:

Human chondrosarcoma cells (SW1353), similar to 
chondrocytes, were purchased from American Type 
Culture Collection (ATCC) (Massas, Virginia, USA). 
SW1353 were digested with 2 ml 0.25 % trypsin for 
30 min at room temperature. After removing trypsin, 
cells were digested overnight with 2 ml collagenase 
(0.2 %) and filtered through 200 mesh. The cells were 
then incubated in a constant temperature incubator 
with a DMEM medium containing 10 % FBS at 37° 
and 5 % Carbon dioxide (CO2). The medium was 
changed every 2 d and the growth confluence rate 
reached 85 % for digestion and subculture.

Cell groups and transfection:

A density of 3000 chondrocytes cells from the 3rd 
to 5th generations per well were planted into 96-
well plates and cultured overnight. Following IL-1 
(10 ng/ml) treatment, PNS at low, medium and high 
concentrations (100 g/ml, 200 g/ml and 400 g/ml) 
were added into each well. They were classified as 
IL-1, IL-1+PNS-L, IL-1+PNS-M and IL-1+PNS-H, 
with a blank control serving as a control group. Using 
Lipofectamine 2000, the empty vector and TLR4 
overexpression were transfected into chondrocytes. 
6 h later, cell solution was added with 10 ng/ml IL-
1β and 400 μg/ml PNS. They were recorded as IL-
1β+PNS-H+vector group and IL-1β+PNS-H+TLR4 
group. The cells were cultured continuously for 
48 h and subjected to collection for follow-up 
experiments.

MTT assay: 

Cell viability was determined using MTT assay. 
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Briefly, cells in each group were separated by trypsin 
and added to 96-well plates. The cells were cultured 
for 24 h, 48 h and 72 h at 37° and 5 % CO2. 20 μl 
MTT reagents was added into each well and the cell 
liquid was removed from each well, 150 μl dimethyl 
sulfoxide was added and the crystals were dissolved 
by stirring for 10 min. An automatic micro plate 
reader was used to measure the absorbance (Optical 
Density (OD) value at 490 nm and the cell activity 
(%)=OD treatment/OD control group×100 %.

Enzyme-Linked Immunosorbent Assay (ELISA) 
assay: 

In short, collected cells in each group were cultured 
for 48 h. Then, cell supernatant was collected after 15 
min of centrifugation at 12 000 r/min. The ELISA kit 
was used to detected SOD activity, GSH-Px activity 
and MDA, IL-6 and TNF-α content.

Western blot:

Generally, protein lysate was added to cells of 
each group and the total protein was extracted. The 
BCA method was used for quantitative analysis of 
the extracted total protein. The protein was boiled 
for 5 min, removed to cool and then 30 μg protein 
per well was loaded on Sodium Dodecyl Sulphate-
Polyacrylamide Gel Electrophoresis (SDS-PAGE). 
The cultures were closed until they contained 5 % 
skim milk powder for 2 h. The membranes were 
washed three times after an overnight incubation 
with TLR4 and MyD88 at 4°. The secondary 
antibodies were then added at a dilution of 1:2500. 
The membranes were incubated at room temperature 
for 2 h and exposed to an electrochemiluminescence 
reagent. The gray value of protein was observed 

using ImageJ software.

Statistical analysis:

All data was analyzed using Statistical Package for 
the Social Sciences (SPSS) 21.0 software in this 
study. Statistical significance boundary value was 
set at p<0.05. Data were compared using Analysis 
of Variance (ANOVA) for five groups or t-test 
for two groups. Experiments were exhibited as 
mean±standard deviation.

RESULTS AND DISCUSSION
Relative to control group, cell viability was 
significantly reduced in IL-1β group at 24 h, 48 h 
and 72 h (p<0.05) (Table 1), indicating the repression 
of IL-1β on chondrocyte proliferation. Furthermore, 
as presented in Table 1, cell viability in IL-1β+PNS 
groups was significantly high compared to IL-
1β group at 24 h, 48 h and 72 h (p<0.05). More 
than that, the cell activity of IL-1β stimulated OA 
chondrocyte also increased gradually with increasing 
PNS concentration. As a result, PNS could effectively 
enhance IL-1β stimulated OA chondrocyte 
proliferation.

As shown in Table 2, after IL-1β treatment, SOD and 
GSH-Px activities of chondrocyte were significantly 
reduced, while MDA content was obviously enhanced 
(p<0.05). Otherwise, SOD and GSH-Px activity in 
IL-1β+PNS groups were obviously increased vs. 
IL-1β group, whereas MDA content was notably 
reduced (p<0.05). And the higher the concentration 
of PNS, the more obvious the change of SOD and 
GSH-Px activity, and MAD content. Therefore, PNS 
could weaken oxidative stress in OA chondrocytes 
induced by IL-1β.

Group
Cell viability (%)

24 h 48 h 72 h

Control 101.37±6.54 102.54±9.23 98.27±7.19

IL-1β 59.66±5.31* 52.66±4.36* 46.32±4.11*

IL-1β+PNS-L 65.39±5.24# 61.38±5.47# 53.45±3.28#

IL-1β+PNS-M 77.39±7.52# 70.69±5.92# 62.87±6.51#

IL-1β+PNS-H 89.65±7.83# 84.13±7.25# 75.39±6.82#

F 61.129 78.255 112.085

p 0.000 0.000 0.000

Note: *p<0.05 as compared to control group and #p<0.05 as compared to IL-1β group 

TABLE 1: EFFECT OF PNS ON IL-1β STIMULATED OA CHONDROCYTE VIABILITY (x̄±s, n=9)
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As important inflammatory factors, IL-6 and TNF-α 
could reflect cellular immunity. In Table 3, IL-6 and 
TNF-α levels in the IL-1 group enhanced dramatically 
when compared to control group (p<0.05). Otherwise, 
compared with IL-1β group, IL-6 and TNF-α content 
in IL-1β+PNS groups were lower (p<0.05). Not 
only that, IL-6 and TNF-α levels also diminished 
gradually with increasing PNS concentration in 
IL-1β stimulated OA chondrocyte. Therefore, PNS 
could effectively reduce inflammatory process in OA 
chondrocytes stimulated by IL-1β.

Compared to control group, TLR4 and MyD88 
protein expression in IL-1β group was substantially 
enhanced (fig. 1) (p<0.05). Furthermore, relative to 
IL-1β group, TLR4 and MyD88 protein expression 
was markedly reduced in IL-1β+PNS groups 
(p<0.05) and higher PNS concentration, the lower 
TLR4 and MyD88 protein expression (Table 4). Sum 
to up, PNS inhibited the protein expression of TLR4/
MyD88 axis in IL-1β-stimulated OA chondrocytes.

TLR4 protein expression was dramatically increased 
in the IL-1+PNS-H+TLR4 group compared to 
the IL-1+PNS-H+vector group (fig. 2), while cell 
viability was significantly decreased at 24 h, 48 h and 
72 h (p<0.05) (Table 5). In addition, relative to IL-
1β+PNS-H+vector groups, SOD and GSH-Px content 
were significantly reduced, while MDA content and 
IL-6, and TNF-α were apparent level enhanced in 
IL-1β+PNS-H+TLR4 group (p<0.05) (Table 6). 
Therefore, PNS in IL-1β treated OA chondrocytes 
can promote cell proliferation and oxidative stress 
recovery while inhibiting inflammatory process by 
regulating TLR4/MyD88 axis.

IL-1β is a multifunctional inflammatory cytokine 

that belongs to the IL-1 family. IL-1β inhibits 
antioxidant enzymes, promotes ROS production and 
promotes the secretion of a variety of inflammatory 
factors after stimulating OA chondrocytes, thereby 
exacerbating the development of OA[15-17]. In this 
research, chondrocytes were treated with IL-1β to 
obtain an OA model and it found a decrease in cell 
viability, SOD activity and GSH-Px activity and an 
increase in MDA, IL-6 and TNF-α content, which 
was coincident with previous studies[18].

Derived from the root or rhizome of Panax 
notoginseng, PNS has the effects of dissipating blood 
stasis and stopping bleeding, as well as reducing 
swelling and pain[19,20]. The main components of PNS 
include ginsenoside Rb1 and Rg1 and PNS R1, which 
have anti-inflammatory, anti-oxidation, regulation 
of immune diseases and anti-tumor effects[20-23]. 
Some studies have shown that PNS combined with 
Tripterygium wilfordii polyglycosides can effectively 
inhibit inflammatory damage in rats with collagen-
induced arthritis[24]. According to Zhang et al., PNS 
could prevent the apoptosis of OA chondrocytes 
induced by TNF-α and delay matrix degradation. 
However, it is still unknown how PNS affects OA 
chondrocyte’s proliferative, oxidative stress-induced 
and inflammatory responses. Therefore, in this 
study, OA chondrocytes were treated with PNS at 
low, medium and high concentrations of 100, 200 
and 400 μg/ml, and the results revealed that, PNS at 
low, medium and high doses could increase the cell 
proliferation, SOD activity and GSH-Px activity of 
OA chondrocytes stimulated by IL-1β, decline MDA 
content and reduce IL-6 and TNF-α levels, suggesting 
that PNS could enhance the cell proliferation of OA 
chondrocyte stimulated by IL-1β, inhibit oxidative 
stress and inflammatory response. 

Group SOD (U/ml) GSH-Px (U/l) MDA (μmol/l)

Control 21.32±2.01 79.32±6.85 2.81±0.22

IL-1β 6.32±0.54* 26.15±2.90* 9.53±0.45*

IL-1β+PNS-L 8.66±0.35# 38.97±3.21# 8.01±0.33#

IL-1β+PNS-M 12.11±1.01# 50.04±4.85# 6.24±0.54#

IL-1β+PNS-H 16.38±1.42# 67.93±6.22# 4.26±0.35#

F 217.602 161.985 430.547

p 0.000 0.000 0.000

Note: *p<0.05 as compared to control group and #p<0.05 as compared to IL-1β group

TABLE 2: INFLUENCE OF PNS ON SOD, GSH-Px AND MDA IN IL-1β STIMULATED OA CHONDROCYTES 
(x̄±s, n=9)
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Group IL-6 (ng/l) TNF-α (ng/l)

Control 32.65±3.89 59.67±4.82

IL-1β 126.97±10.45* 169.35±14.33*

IL-1β+PNS-L 98.34±7.65# 142.19±10.24#

IL-1β+PNS-M 73.66±7.05# 106.97±10.11#

IL-1β+PNS-H 48.53±4.28# 85.32±7.99#

F 257.231 172.831

p 0.000 0.000

Note: *p<0.05 as compared to control group and #p<0.05 as compared to IL-1β group

TABLE 3: EFFECT OF PNS ON INFLAMMATION IN IL-1β STIMULATED OA CHONDROCYTES (x±s, n=9)

Fig. 1: TLR4, MyD88 and GAPDH expression was measured via Western blot in control, IL-1β and IL-1β+PNS-L/M/H groups

Group TLR4 MyD88

Control 0.24±0.03 0.32±0.04

IL-1β 0.82±0.07* 0.89±0.07*

IL-1β+PNS-L 0.69±0.06# 0.75±0.05#

IL-1β+PNS-M 0.57±0.05# 0.63±0.05#

IL-1β+PNS-H 0.35±0.05# 0.49±0.04#

F 177.906 168.939

p 0.000 0.000

Note: *p<0.05 as compared to control group and #p<0.05 as compared to IL-1β group

TABLE 4: EFFECT OF PNS ON TLR4 AND MYD88 PROTEINS IN IL-1β STIMULATED OA CHONDROCYTES 
(x±s, n=9)

Fig. 2: TLR4 content was examined via Western blot in IL-1β+PNS-H+vector and IL-1β+PNS-H+TLR4 groups



March-April 2023Indian Journal of Pharmaceutical Sciences523

www.ijpsonline.com

Immune and inflammatory responses are greatly 
influenced by the TLR4/MyD88 signaling pathway. 
TLR4 is a member of TLR family. After being 
recognized by receptors, TLR4 can signal to 
MyD88, thereby activating NF-κB, Interferon 
Regulatory Factor 3 (IRF3) and more involved cells 
in the inflammatory response and promoting the 
development of arthritis[25-27]. Inhibition of TLR4/
MyD88 axis could attenuate chronic mechanical 
pain in endometriosis[28]. In addition, astragaloside 
IV protected against acute myocardial infraction 
via modulating TLR4/MyD88/NF-κB axis[29]. 
For instance, the TLR4/MyD88/NF-κB signaling 
pathway was regulated by the microRNA-382-
3p/CX43 axis in OA chondrocytes, which had an 
impact on the inflammatory injury[30]. Intriguingly, 
our finding revealed that TLR4 and MyD88 protein 
expression was up-regulated after IL-1β treatment 
of OA chondrocytes, whereas PNS reduced TLR4 
and MyD88 protein expression, suggesting that 
TLR4/MyD88 signaling pathway may be linked 
to the mechanism of PNS on IL-1β stimulated OA 
chondrocytes. Moreover, TLR4 overexpression 
repressed cell activity, SOD activity and GSH-
Px activity, while increasing MDA, IL-6 and 
TNF-α level. These findings suggested that PNS 
may influence IL-1β stimulated OA chondrocyte 
development by regulating TLR4/MyD88 pathway. 

However, our study is limited by the lack of 
experiments on animal modes. In the future, we will 
build an OA model in mice for relevant research 
verification. Moreover, the regulatory mechanism 
of cell response to stimulus is very complex and the 
regulatory mechanism in the treatment of OA with 
PNS can be further explored.

In conclusion, PNS promoted IL-1β stimulated OA 
chondrocyte proliferation, and weaken cell oxidative 
damage and inflammatory response by modulating 
the TLR4/MyD88 axis.
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