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Qiu et al.: Diterpene Glumine Injection Treatment for Cerebral Small Vascular Disease

To examine the potential benefits of Ginkgo biloba diterpene glumine injection as a treatment for cerebral small 
vascular disease, as well as the effects of the injection on oxidative stress and brain inflammation in cerebral small 
vascular disease model rats, as well as the cognitive function of these animals. 24 male Sprague-Dawley rats were 
split into three groups randomly; a diterpene glumine injection group, a model group, and a normal control group, 
eight rats in each group. The cerebral small vascular disease model was induced, and rats in the experimental 
group underwent water maze testing to evaluate their behavioral and cognitive functions. Biochemical methods 
were employed to analyze oxidase activity and malondialdehyde levels in brain tissue. Nitric oxide content and 
inducible nitric oxide synthase activity were performed in brain tissue. Brain water content was determined using 
the weightlessness method, and the percentage of brain infarct volume was calculated via 2,3,5-triphenyltetrazolium 
chloride staining. Pathological alterations in brain tissue and neuronal death were observed through terminal 
deoxyuridine triphosphate nick end labeling, haemotoxylin and eosin labeling techniques. Following the 
establishment of the cerebral small vascular disease model, there was a decrease in cognitive function, an increase 
in the neurological impairment score, an increase in the infarct area and brain water content, an observation of 
oxidative stress and inflammatory infiltration in the brain tissue, a decrease in synaptic function, and an increase in 
the rate of neuronal apoptosis. Following diterpene glumine injection administration, the cerebral small vascular 
disease model rats cognitive function progressively returned, the damage to their neurological system decreased, 
the extent of their cerebral infarction shrank, the levels of oxidative stress and inflammatory infiltration in the brain 
improved. More significantly, in rats with cerebral small vascular disease model disease, diterpene glumine injection 
reduced the pathogenic alterations in brain tissue, synaptic function, and neuronal death. Diterpene glumine 
injection can improve the cognitive function of cerebral small vascular disease model rats, reduce the damage 
of nerve function and the size of cerebral infarction, and improve the apoptosis and pathological development of 
brain neurons in cerebral small vascular disease model rats by reducing brain oxidative stress and inflammatory 
infiltration.

Key words: Cerebral small vessel disease, cognitive impairment, inflammation, oxidative stress, Ginkgo 
diterpene lactone

The current aging process of society is quickening, 
and with the advancement and widespread use of 
imaging, middle-aged and older persons are more 
likely to be diagnosed with Cerebral Small Vascular 
Disease (CSVD), which accounts for 20 % to 25 % 
of ischemic stroke patients[1]. The term CSVD is 
utilized when discussing the clinical, radiological, 
and pathological symptoms of the illness 
brought on by the damage to tiny blood arteries 
in the brain[2]. The phrase "small blood vessels" 

encompasses the pathological process present in 
arterioles, capillaries, venules with vessels having 
diameter between 40 and 200 µm. On the other 
hand, the term "pathological structure" primarily 
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denotes the pathological process found in small 
blood vessels situated beneath the cortex. The 
diagnosis of CSVD is mostly based on imaging 
findings, which are classified into four categories 
namely, cerebral microbleeds, perivascular space, 
leukoaraiosis, and lacunar infarction. This is 
because the disease lacks identifiable clinical signs. 
Magnetic resonance imaging of the head makes 
it simple to identify the two imaging categories 
of leukoaraiosis and lacunar infarction. CSVD 
and cognitive function are intimately associated 
with each other. Since it can be challenging to 
diagnose early cognitive impairment, up to 45 % of 
individuals with dementia develop the disease later 
on. The most notable clinical symptom of CSVD-
induced cognitive impairment is a marked loss in 
executive and attention function. Other clinical 
manifestations include psychomotor retardation, 
attention, planning, delayed recall, and executive 
dysfunction syndrome. It also involves problems 
with the gait[3], emotion and behavior[4] and 
urinary system disorders[5], in addition to cognitive 
impairment.

As the disease advances, cognitive function 
deterioration intensifies, accompanied by 
increasingly apparent challenges that significantly 
impact the daily lives of middle-aged and elderly 
individuals. For patients with small cerebral 
vascular disease, it is important to detect cognitive 
impairment, control risk factors as early as possible, 
and formulate individual specific treatment plans 
according to its etiology and pathogenesis before 
without delaying the development of the disease. 
Studies have shown that the chronic low-level 
inflammatory process can lead to the injury and 
increase of permeability of endothelial cells in small 
cerebral vessels[6], which promotes the occurrence 
of vasculitis. In the pathological progression of 
CSVD, inflammation (including Tumor Necrosis 
Factor (TNF) and Interleukin (IL)) leads to 
immune cell infiltration (such as macrophages and 
lymphocytes), forming inflammatory foci around 
small blood vessels in the brain[7,8]. In addition, 
oxidative stress is a process of cellular damage 
caused by the accumulation of free radicals and 
oxidizing substances. In CSVD, oxidative stress 
can accelerate the aging and failure of endothelial 
cells in brain and small blood vessels can decrease 
the stability of blood vessel walls[9]. Oxidative 
stress can also affect cerebral blood flow and 
metabolism, exacerbating the development of 

small cerebral vascular diseases[10]. Generally, 
inflammation and oxidative stress represent 
crucial mechanisms underlying the onset and 
progression of CSVD. The interplay between these 
processes contributes to structural and functional 
abnormalities in cerebral micro vessels, ultimately 
impacting the normal brain function. Therefore, 
controlling inflammation and oxidative stress may 
become one of the important strategies for the 
prevention and treatment of CSVD.

According to the Compendium of Materia Medica, 
Ginkgo has the effect of "dispersing toxins". Now, 
the ancient Chinese term "dispersing toxins" 
means removing inflammation and oxidation states 
from the body. The phrase "dispersive toxin" led 
to the original idea of today's anti-inflammatory 
and antioxidant studies of Ginkgo biloba in Acute 
Cerebral Infarction (ACI). At present, Ginkgo 
biloba extract has shown various pharmacological 
effects, especially in the treatment of ACI[11,12]. 
The main components of Ginkgo Diterpene 
Lactone Meglumine Injection (GDLMI) are 
extracted from Ginkgo biloba leaves, including 
Ginkgo biloba A, B, C, J, K, L and M. Among 
them, A, B and K are the main active components 
of GDLMI[13]. Ginkgolides A, B, and K exhibit 
widespread distribution in different organs and 
tissues, with the kidney, liver, and intestine 
displaying the highest concentrations, while the 
brain shows comparatively lower levels[14]. The 
main components of GDLMI have been pre-
tested in a wide range of diseases and have shown 
effective therapeutic effects. Studies have found 
that GDLMI can improve depression-like behavior 
in patients. Clinical study has shown that GDLMI 
can improve migraine symptoms in patients, while 
ginkgolide B can prevent aura migraine[15]. Some 
studies have also found that GDLMI can improve 
cognitive function, reduce memory impairment 
thereby enhancing the learning ability, and is 
a potential drug for the treatment of vascular 
cognitive impairment and Alzheimers Disease 
(AD)[16,17]. In addition, ginkgolide can promote 
neuronal differentiation through related pathways, 
and can also reduce nerve cell apoptosis in alpha-
synuclein aggregates, raising the prospect of new 
therapies for future neurodegenerative diseases.

Based on the role of Ginkgo diterpene in 
alleviating inflammation and participating in 
immune regulation, this study studied the effects of 
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Diterpene Glumine Injection (DGMI) on cognitive 
function, brain inflammation and oxidative stress 
in CSVD model rats, and investigated the effects of 
DGMI on brain pathological changes and neuronal 
apoptosis in CSVD model rats. It is expected to 
provide new experimental data support for the 
treatment of CSVD.

MATERIALS AND METHODS
Animal origin:

The experimental Sprague-Dawley (SD) rats were 
purchased, weighing 230~250 g. Experimental 
animals were fed adaptively for 1 w to 2 w. 
Implement the Research Animal Ethics Committee 
(IAEC) animal testing guidelines in accordance 
with the system.

Animal grouping and modeling:

The animals were divided into three groups (n=8); 
control, model, and DGMI. In the control group, 
only the neck was incised and sutured. The model 
group adopts Bilateral Carotid Artery Occlusion 
(BCAO) to establish the CSVD model of low 
perfusion injury[18]. The specific methods are as 
follows: The rats were anesthetized and fixed in 
the supine position, and the bilateral common 
carotid arteries were permanently overlapped with 
surgical sutures. Based on the model group, 6 mg/
(kg) DGMI (Jiangsu Kangyuan Pharmaceutical 
Co., Ltd., specification: 5 mg: 1 ml, lot number: 
20171124) was injected intraperitoneally daily in 
DGMI group while the model group was injected 
with normal saline of equal proportions for 7 d.

Detection index:

Neural functional deficit score: 10-point scale 
was performed[19,20] and the score according to 
the symptoms were given. 1 point for upper limb 
holding wrist flexure, 2 points for elbow flexure, 
3 points for shoulder flexure and 1 point for circle 
crawling, 1~3 points were given to withdrawal 
resistance and muscle tone decline.

Cognitive ability test: In this experiment, the 
water temperature of the Morris water maze was 
maintained at (25°±2°), and a transparent circular 
platform with a diameter of 12 cm was placed 
underwater at 2 cm. The positioning voyage began 
at 10 am every day for 5 consecutive d; after 1 
w of rest, the positioning sailing experiment was 
repeated once. During the experiment, the virtual 
4 quadrants of the pool were studied. The rats were 

put into the water 1 h in advance from the fixed 
drop point facing the pool wall, and the time to 
find the platform within 60 y was recorded as the 
escape incubation period. The rats that did not 
find the platform within 60 s were guided to the 
platform with a small stick and allowed to stop 
on the platform for 15 s. The escape latency was 
recorded with the memory spatial marker for 60 
s. The rats that successfully reached the platform 
within 60 s were also allowed to rest on the 
platform for 15 s. At the end of the experiment, 
each rat’s route and escape latency were recorded 
each time they swam. After 24 h of completion 
of all the positioning navigation experiments, the 
space exploration experiment was carried out, the 
platform was removed, and the rats were allowed 
to enter the water in the opposite quadrant of the 
original platform. The swimming route of the rats 
was recorded in the pool for 60 s, and the number 
of times they passed the original platform and 
the percentage of time they spent in the original 
platform quadrant were calculated.

Cerebral water content and infarct volume 
percentage: Three rats were randomly selected 
from each group according to the random 
number table method, and the brain tissues were 
taken after anesthesia, and immediately after 
weighing (W1), they were roasted at 110° for 48 
h to constant weight, and weighed again (W2). 
The weight difference between the two rats was 
weight loss (ΔW=W1-W2), and the brain water 
content (%)=(ΔW/W1)×100 %. Brain tissues 
of 3 rats were taken from each group, frozen at 
-20° for 15 min, and were sliced with a coronal 
thickness of 2 mm, and then incubated with 2 
% 2,3,5-Triphenyltetrazolium Chloride (TTC) 
solution in the dark for 30 min (the slices were 
turned over for every 5 min). Finally, the percentage 
of infarct volume was calculated.

Biochemical examination of brain tissue: The rat 
brain tissue was taken, and the tissue homogenate 
was prepared with a concentration of 10 % after 
proper amount of cold lysate was added. After 
centrifuging the brain homogenate after 15 
min at 4° (3000 r/min) to get the supernatant, 
colorimetry was used to measure the activity of 
Superoxide Dismutase (SOD), Catalase (CAT), 
and Malondialdehyde (MDA). The enzyme-linked 
immunosorbent assay was utilized to ascertain the 
concentrations of TNF-Alpha (α), IL-6, and IL-1 
Beta (β) in brain tissue.
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Fig. 1: Effects of DGMI on neural and cognitive function in CSVD model rats, (A): Animal modeling; (B): Nerve injury score; (C): 
Escape latency; (D): Platform crossing times; (E): Directional cruise and (F): Space exploration 
Note: *p<0.05 vs. control group and #p<0.05 vs. model group

2). Tubulin is used as the internal parameter. The 
membranes were subsequently treated the next day 
with a Horseradish Peroxidase (HRP)-conjugated 
secondary antibody. The protein bands were 
imaged and analyzed after exposure.

Statistical analysis:

For analysis, Statistical Package for the Social 
Sciences (SPSS) 15.0 software was utilized. For 
the purpose of comparing means across several 
groups, one-way Analysis of Variance (ANOVA) 
was employed, whereas the Least Significant 
Difference (LSD)-t test was utilized to compare 
pairings. The test standard was set at α=0.05 
and the measurement data were reported as 
mean±standard deviation p<0.05 was regarded as 
statistically significant.

RESULTS AND DISCUSSION 
Fig. 1 displays the animal modeling used for 
CSVD. The model group’s directional cruise and 
space exploration route was disrupted (p<0.05), the 
number of platform crossings was less (p<0.05), 
the escape latency time was considerably longer 
(p<0.05), and the model group’s nerve damage 
score was higher (p<0.05) than that of the control 
group. Rat’s brain function, learning, and memory 
function all significantly improved after DGMI 
intervention as compared to the model group 
(p<0.05) as shown in fig. 1.

Pathological examination of brain tissue: Slices 
of rat brain tissues were paraffin embedded, 2 μm 
thick, dewaxed, hydrated, and stained with HE 
after being fixed for 72 h in a 10 % formaldehyde 
solution. The histological morphological and 
structural changes of the ischemic brain were 
identified using an optical microscope.

Observation of neuronal apoptosis: Terminal 
Deoxynucleotidyl Transferase dUTP Nick end 
Labeling (TUNEL) staining was performed 
according to the kit instructions and the apoptosis 
of neurons in ischemic cerebral tissue was 
observed by optical microscope. The total number 
of neurons in the visual field and the number of 
apoptotic neurons were counted 

Apoptotic Index (AI, %)=(number of apoptotic 
neurons/total number of neurons)×100 % 

Western blotting: Radioimmunoprecipitation 
Assay (RIPA) (Beyotime, China) was utilized to 
lyse the cells. Using a Bicinchoninic Acid (BCA) 
assay kit, the total protein was measured. It was then 
separated using a 10 % Sodium Dodecyl Sulphate-
Polyacrylamide Gel Electrophoresis (SDS-PAGE) 
gel sample and electrophoretically transferred to 
a Polyvinylidene Difluoride (PVDF) membrane. 
Subsequent to blocking, the membranes were 
treated overnight at 4° with primary antibodies 
against synaptophysin, PSD95, Bcl-2-Associated 
X Protein (BAX) and B-Cell Lymphoma 2 (Bcl-
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Brain oxidative stress and inflammatory detection 
revealed that following CSVD modeling, the 
contents of MDA, TNF-α, IL-1β, and IL-6 were 
dramatically elevated (p<0.05), while the activities 
of SOD and CAT were significantly lowered 
(p<0.05). Following the DGMI intervention, there 
was a substantial (p<0.05) drop in the contents of 
MDA, TNF-α, IL-1β, and IL-6, and an increase in 
the activities of SOD and CAT (p<0.05) as shown 
in fig. 3.

The water content and infarct volume of the brain 
tissue were compared after the neurological and 
cognitive function tests were finished. It was 
discovered that the CSVD model rat’s brain 
tissue had higher water content and an infarct 
volume percentage than that of the control group 
(p<0.05). Following DGMI intervention, there was 
a substantial reduction (p<0.05) in both the water 
content and infarct volume percentage of the brain 
tissue as shown in fig. 2.

Fig. 2: Comparison of water content and infarction in CSVD model rats by DGMI, (A): Content of water in brain; (B): Percentage 
of cerebral infarction volume and (C): TTC
Note: *p<0.05 vs. control group and #p<0.05 vs. model group

Fig. 3: Comparison of oxidative stress and inflammation in brain of CSVD model rats by DGMI, (A-C): SOD\CAT\MDA and (D-F): 
IL-1β\IL-6\TNF-α
Note: *p<0.05 vs. control group and #p<0.05 vs. model group
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Fig. 4: Effects of DGMI on brain histopathological morphological changes and synaptic function in CSVD model rats, (A): Brain 
histopathological changes (400 μm) and (B-D): Expression of synaptophysin and PSD95 protein
Note: (  ): Damage, *p<0.05 vs. control group and #p<0.05 vs. model group

there was a substantial (p<0.05) increase in the 
expressions of Postsynaptic Density protein-95 
(PSD-95) and synaptophysin as shown in fig. 4.

Neuronal apoptosis detection revealed that whereas 
a significant number of apoptotic neurons emerged 
in the model group (p<0.05), there were none in the 
sham surgery group. Following DGMI treatments, 
there was a substantial (p<0.05) decrease in the 
number of neuronal apoptosis. Apoptosis-related 
proteins were detected, and it was shown that 
following DGMI intervention, BAX protein rose 
and Bcl-2 protein decreased in the model group as 
shown in fig. 5.

Sections were taken at the end of the experimental 
study, and no abnormalities were found in the 
control group. In the model group, the brain 
tissue neurons showed obvious morphological and 
structural pathological changes, including spongy 
degeneration of the brain tissue, reduction of 
the number of neurons, cytoplasmic contraction, 
vacuolar degeneration, uneven cytoplasmic 
coloring, and deep staining of the nucleus. The 
model group’s brain lesions can be considerably 
improved by DGMI treatments as compared to 
the model group. Synapsin and PSD95 protein 
expression were considerably (p<0.05) lower in 
the model group. Following DGMI stimulation, 
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As a common clinical cerebrovascular disease, 
CSVD has been paid more and more attention with 
the development of imaging. However, the onset 
of small cerebral vascular disease is hidden, and 
the early asymptomatic clinical manifestations are 
often ignored, thus delaying the early diagnosis 
and treatment of the disease. CSVD is a highly 
age-related disease, and the clinical and imaging 
manifestations of CSVD in people over 65 y old 
reach about 80 %[21]. It is difficult to observe the 
pathological characteristics of CSVD, which is 
usually asymptomatic, and gradually develops 
various neurological function deficits, mainly 
including cognitive affective disorders, gait 
abnormalities, voiding disorders, etc. Among 
various clinical manifestations, cognitive function 
impairment has received much attention[22-26]. The 
cognitive function impairment of CSVD patients 
shows a gradual development pattern. In the early 
stage, the patients may only have impairments in 
executive ability, attention and orientation, but in 
the course of disease development, the impairments 

in language ability and computing ability will 
gradually appear, and in the late stage, vascular 
dementia will develop[27]. Therefore, the early 
diagnosis of CSVD patients and the discovery of 
risk factors are particularly important. In our study, 
we established a rat model of CSVD using BCAO, 
and detected the neural and cognitive functions 
of the model rats. It was found that cognitive 
function declined and neurological function injury 
score increased after CSVD modeling. Further 
testing also found that along with the increase of 
brain tissue water content and infarct size, this 
was very similar to the clinical manifestations of 
CSVD. It is suggested that BCAO has successfully 
established a rat model of CSVD, which can 
be applied to the discovery of risk factors in 
subsequent experiments.

Oxidative stress plays a major role in the changes 
of cerebral vascular structure[28-30]. Cerebral blood 
flow changes with changes in the structure of 
cerebral vessels, which is affected in a complex way. 
Internal and external remodeling can also lead to 

Fig. 5: Comparison of neuronal apoptosis in CSVD model rats by DGMI, (A and B): Neuron apoptosis (100 μm) and (C-E): The 
expression of BAX and Bcl-2 protein
Note: *p<0.05 vs. control group and #p<0.05 vs. model group
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the remodeling of small blood vessel walls, which 
leads to the reduction of the diameter of cerebral 
vessels[31]. The occurrence of vascular cognitive 
dysfunction is also directly and closely related 
to oxidative stress and chronic inflammation of 
central neuropathy[32]. For example, small cerebral 
vascular disease causes the formation of microglia 
and astroglia cells, thus increasing the oxidative 
stress in the brain, leading to the discharge of 
inflammatory mediators, and then secondary 
damage to small blood vessels, leading to 
neurological and vascular dysfunction[29]. Studies 
have found that when the brain is completely 
hypoxic[33], under the stimulation of ischemic and 
hypoxic environment, microglia nerve cells can 
activate and proliferate through stimulating protein 
kinase channels, thus forming cytotoxic proteins 
such as serine protein kinase and collagenase, 
and producing inflammatory mediators such as 
TNF-α and leukocyte mediators β. Nerve cells 
are destroyed by these intervening inflammatory 
factors. In view of the mechanism of oxidative 
stress and inflammation in the brain, they can be 
used as targets for new drug research. DGMI mainly 
contains ginkgolides A, B and K, and in the current 
study, ginkgolides A, B and K have been found to 
have extensive pharmacological effects[34]. A large 
amount of evidence has shown that ginkgolide A, 
B and K have important effects on central nervous 
system function[35,36], from enhancing cognitive 
function in dementia patients to promoting 
neuroprotection and recovery of acute hypoxic/
ischemic injury. However, the study of ginkgolide 
in CSVD is still lacking at home and abroad. In 
our study, we found that after DGMI intervention, 
the cognitive function of CSVD model rats was 
gradually restored, the neurological function 
damage was reduced, and the cerebral infarction 
area was less. This might be because ginkgolide 
A enhances rat memory and inhibits amyloid-
induced depolarization of cortical neurons. In the 
study of oxidative stress and inflammation, we 
also found that the phenomenon of oxidative stress 
and inflammatory infiltration appeared in the brain 
tissue of rats in the model group, and after DGMI 
intervention, the oxidative stress and inflammatory 
infiltration in the brain were also improved. It 
is suggested that DGMI can effectively relieve 
oxidative stress and inflammatory infiltration in 
brain. Studies have reported that ginkgolide A can 
improve non-alcoholic fatty liver disease induced 

by high-fat diet in mice by inducing apoptosis of 
cellular lipids and inhibiting cellular inflammatory 
response[37]. Ginkgolide B can reduce the damage 
of rat hippocampal neurons induced by hypoxia 
by inhibiting oxidative stress and apoptosis[38-41]. 
Ginkgolide K also has antioxidant stress and 
neuroprotective effects and has been used for 
hundreds of years to treat cerebrovascular 
and cardiovascular diseases[42,43]. Our study is 
consistent with previous research.

The role of DGMI is not only that, neuron synapse 
is the biological material basis of learning 
and memory, and its dysfunction will lead to 
cognitive decline. Synaptophysin is located in 
the synaptic vesicular membrane, and its protein 
expression affects the density and distribution of 
synapses[44]. PSD95 can regulate the development 
and maturation of synapses, and is a critical 
component involved in dendrite morphogenesis, 
synaptic plasticity and glutamate transmission in 
the process of neural maturation[45-49]. In the study 
of brain histology in CSVD model rats, we found 
that after DGMI intervention, the brain histology 
was improved, the expression of synaptophysin 
and PSD95 protein was significantly increased, 
and neuronal apoptosis was also significantly 
decreased, suggesting that CSVD can effectively 
alleviate brain tissue lesions, synaptic function 
changes and neuronal apoptosis in CSVD model 
rats. The discovery of neuronal apoptosis is also 
related to inflammation and oxidative stress, CSVD 
can improve oxidative stress and inflammatory 
infiltration, and then affect neuronal apoptosis.

In conclusion, DGMI can improve the cognitive 
function of CSVD model rats, reduce the damage of 
nerve function and the size of cerebral infarction, 
and improve the apoptosis and pathological 
development of brain neurons in CSVD model 
rats by reducing brain oxidative stress and 
inflammatory infiltration.
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