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Ginsenoside from Panax ginseng Meyer Enhances the 
Cytotoxic and Apoptotic Effect of Cisplatin in A549 
Human Lung Cancer Cells
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Park, et al.: Ginsenoside Rf Enhances CPP Effect in Cancer Cells

Ginsenosides from Panax ginseng Meyer have been used in combination with cisplatin to enhance anticancer 
potential of cisplatin. However, the combined effects of ginsenoside Rf and cisplatin has not been studied 
so far. Thus, we evaluated the anticancer activity of ginsenoside Rf alone and combined with cisplatin by 
using A549 cell line. Our results showed that cytotoxicity, reactive oxygen species generation and apoptotic 
effect of cisplatin at 1 µg/ml was enhanced by ginsenoside Rf along with the increase of p53 expression at 
protein and gene level, as well as reduction of the mRNA expression levels of Bcl-2 and Bax was higher for 
the combined treatment. Further, phosphorylation of epithelial growth factor receptors induced by cisplatin 
alone was decreased after exposing the cells to the combined treatment. Similarly, the motility of the cells 
was higher decreased after combining cisplatin and ginsenoside Rf than single drug treatment. In this study, 
ginsenoside Rf increased the anticancer effect of cisplatin on A549 cells. 
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Cisplatin is a well-known chemotherapeutic drug used 
for the treatment of different human cancers, such as 
the bladder, lung, ovarian, and testicular cancer. The 
root of cisplatin to induce cytotoxicity in cancer cells 
has been linked to its ability to interfere with DNA 
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repair mechanism and with this induce DNA damage in 
cancer cells[1,2]. However, several studies reported drug 
resistance and several side effects observed in patients 
during the treatment[1]. Among this, the search for 
new therapeutic agents with the capability to decrease 
the side effects and overcome the drug-resistance of 
cisplatin has been increasing over the years. 

Over the years, numerous natural compounds had been 
used as anticancer therapeutic agents[3]. Panax ginseng 
Meyer, a traditional herbal medicine used for thousands 
of years in East Asian countries, showed a variety of 
anticancer properties in several studies[4]. Ginsenosides 
isolated from P. ginseng, have been reported to enhance 
the anticancer activity of cisplatin[5]. However, the 
activity of the unique ginsenoside Rf (Rf), isolated 
only from P. ginseng root, and its interaction with 
cisplatin has not been reported so far. Previously, Rf 
has demonstrated to induce G2/M phase cell cycle 
arrest and apoptosis in human osteosarcoma, MG-63 
cell line, through the mitochondrial pathway[6]. Thus, 
we hypothesize that Rf alone might have an effect on 
cell motility, induces cytotoxicity and apoptosis, as 
well as enhanced the anticancer activity of cisplatin in 
A549 lung cancer cells. 

The ginsenoside Rf, a unique compound from 
P. ginseng; was received from ginseng bank, Kyung 
Hee University (South Korea) in powdered with a 
purity of ≥95%. Cisplatin (Platosin) was obtained at 
1 mg/ml from Pharmachemie B. V. (GA, Netherlands). 
RPMI-1640 culture media was purchased from 
GenDEPOT Inc. (TX, USA). Fetal bovine serum (FBS) 
and the antibiotics, 100 UI/ml penicillin and 100 µg/ml 
streptomycin, from Gibco-Brl (MD, USA). 

Non-small lung carcinoma cells (A549), were obtained 
from Korean Cell Line Bank (Seoul, South Korea). 
The cells were grown in RPMI-1640, supplemented 
with 10% FBS and 1% of antibiotics. The cells were 
maintained in an incubator at 37° with a humidified 
atmosphere of 5% CO2. The evaluation of cell toxicity 
was done by MTT (3,4,5-dimethylthiazol-2-yl)-2-5-
diphenyletrazolium bromide) assay. The cells were 
exposed to cisplatin (1 µg/ml) in the presence or 
absence of ginsenoside Rf for 72 h. Ten microlitres of 
MTT assay solution (5 mg/ml) was added to each well 
and incubated for 3 h after the treatment had finished. 
Then, old media was replaced by 100 µl of DMSO and 
incubated for 30 min. The amount of formazan formed 
by viable cells was measured by a multi-model plate 
reader (Bio-Tek Instrument, Winooski, VT) at a test 

wavelength of 570 nm with a reference wavelength of 
630 nm[7]. All experiments were repeated in triplets. 

A549 cells were cultured in a 12-well plate (2.5×105 
cells per well) and incubated for 24 h at 5% CO2 
and 37° humidified atmosphere. After a complete 
confluence was reached, old medium was 
replaced with serum-free growth media for 24 h. 
Then, a 10 μl sterile pipette tip was used to make a 
scratch in A549 cell cultures layer. In order to 
remove dead or floating cells, each well was 
washed twice with PBS. The cells were stimulated 
with epidermal growth factor (EGF, 20 ng/ml) 
and treated according to our schedule: 2% FBS, 
2% FBS+EGF, 2% FBS+EGF+cisplatin 1 µg/ml, 2% 
FBS+EGF+Rf 100 µM and 2% FBS+EGF+cisplatin 
1 µg/ml+Rf 100 µM. The scratch gap width at 24 h 
in each treatment group was measured at two different 
positions and compared to the gap width at 0 h. The 
analysis of the images, taken at x10 under an optical 
microscope Eclipse ME600L (Nikon Instruments, 
Melville, NJ), was done by T-scratch program[8]. The 
motility of the cells in response to the treated cells was 
determined relative to the EGF vehicle control.

A549 cells were exposed to cisplatin (1 µg/ml) in 
the presence or absence of ginsenoside Rf (100 µM) 
for 48 h. Cells were washed twice with 1x PBS and 
fixed with 3.7% (v/v) formaldehyde for 5 min at room 
temperature and washed twice with PBS. In order to 
dye the nucleus, the cells were stained with Hoechst 
33258 solution (2 µg/ml) for 30 min in dark condition 
at room temperature. Nuclear morphologies of the 
Hoechst-positive cells were observed and photographed 
under a fluorescence microscope (x400, Optinity, 
Korean Labtech) for further analysis.

Total RNA was isolated from cultured cells using 
TriZol LS reagents (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturer’s protocol. The first-
strand cDNAs was synthesized by using Thermo 
Scientific cDNA synthesis kit (Onebio, Lithuania 
EU)[9,10]. Initial denaturation at 95° for 3 min 
followed by a PCR cycle of denaturation at 95° for 
45 s, annealing at 58° for 1 min and strand extension 
at 72° for 1 min. The number of cycles was 30. The 
final step included incubation at 72° for 10 min. The 
resultant PCR products were electrophoresed on a 0.8% 
agarose gel and analyzed with Image J software[11]. 
SYBR Green qPCR Super Mix UDG kit (Invitrogen, 
Carlsbad, CA) was used for quantitative real-time 
polymerase chain reaction (qRT-PCR) amplification 
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in a R-Corbett Rotor-Gene Model 6000 (Mortlake, 
NSW 2137, Australia). Amplifications were performed 
at an initial temperature of 95° for 10 min, followed for 
40 cycles at 95° for 10 s, 60° 15 s, and 72° for 20 s. The 
analysis was done by follow the delta cycle threshold 
(Ct) method.

Cells were plated at a density of 1×104 cells per 
wells in 96 well plate, allowed to attach overnight 
and exposed to treatment for 72 h. The cells were 
stained with 10 µM H2DCFDA for 30 min at 37°, and 
the fluorescence intensity of the cells was determined 
using multi-model plate reader.

A549 cells were seeded in 100 mm dish culture plate 
at 5×106 cells per dish. After 24 h incubation, the cells 
were subject to serum starvation for 20 h following by 
48 h of treatment. External EGF stimulation was done 
at 20 ng/ml for 30 min prior protein isolation. After 
stimulation and the treatment time was finished, the 
cells were rinsed twice with ice-cold PBS. The total 
proteins were solubilized with 2X sodium dodecyl 
sulphate (SDS) loading buffer (100 mM Tris-Cl 
(pH 6.8), 4% (w/v) SDS, 0.2% (w/v) bromophenol 
blue, 20% glycerol and 200 mM β-mercaptoethanol) 
for 5 min at room temperature (RT). Then, the protein 
was denatured at 95° for 10 min and storage at –20°[12].

For immunoblotting, proteins of total cell lysates were 
loaded and resolved in 10% SDS-polyacrylamide 
gel electrophoresis and run at 120 V. The proteins 
were then transferred to nitrocellulose membranes 
(Millipore) at 100 V for 2 h. The membranes were 
blocked at room temperature (RT) for 1 h with 5% 
skim milk. After blocking, the blots were incubated 
with specific antibodies (Phospho-EGF Receptor 
(Tyr1068), EGF receptor, p53, and β-actin) overnight 
at 4°. The blots were then washed seven times with 
TBS-T, followed by goat antimouse or antirabbit IgG 
secondary antibody for 2 h at RT. Immunolabelling was 
visualized by enhanced chemiluminescence detection 
(EMD Millipore). Band densities were measured using 
ImageJ software[11].

The statistical analyses were performed using GraphPad 
6.04 software (La Jolla, CA 92037, USA). Results are 
expressed as mean±SEM. The statistical significance of 
differences between values was evaluated by one-way 
ANOVA. The differences were considered significant 
at P≤0.05.

In the present study, we investigate the ability of 
ginsenoside Rf (Rf) to increase the anticancer activity 
of cisplatin. The effect was associated with the 

inhibition of cell growth, cell motility; and induction of 
apoptosis at in vitro level. Previously, was reported the 
ability of compounds derived from medicinal plants 
to enhance the cytotoxicity of cisplatin in A549 lung 
cancer cells[13]. Furthermore, it had been reported that 
ginsenosides from P. ginseng enhanced the anticancer 
activity of cisplatin[13,14]. In this study, as a result of the 
treatment with Rf at 100 µM in the presence of cisplatin 
at 1 µg/ml, a significant reduction in the cell viability 
compared to individual Rf and cisplatin treatments was 
observed (fig. 1). In addition, the combined treatment 
significantly enhanced the ROS generation compared to 
the individual treatments (fig. 2). This result indicated 
that ginsenoside Rf may enhance the cytotoxicity of 
cisplatin through increasing the generation of reactive 
oxygen species. 

Fig. 1: Cytotoxicity and pharmacological interaction of 
ginsenoside Rf and cisplatin 
Results are representative of three independent experiments. 
Data are shown as mean±SEM. ***P<0.05 vs. control. *P<0.05 
vs. cisplatin alone. G Rf: Ginsenoside Rf (μM) and C: cisplatin 
(1 μg/ml)
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Fig. 2: Intracellular ROS generation induced by ginsenoside Rf 
and cisplatin 
The production of intracellular ROS in treated A549 cells was 
detected by using H2DCFDA. Data are shown as mean±SEM. 
***P<0.05 vs. control. #P<0.05 vs. cisplatin alone. ROS: 
reactive oxygen species; Rf: ginsenoside Rf (100 μM) and C: 
cisplatin (μg/ml) 
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The induction of apoptosis by cisplatin through induction 
of DNA damage had been well documented[15,16]. 
Besides, the induction of apoptosis by Rf in 
osteosarcoma cells had been already reported[1,15-17]. 
Thus, in order to determinate whether the cytotoxicity 
of the combined treatment of Rf and cisplatin can be 
related to the induction of apoptosis, we evaluated 
the effect of the single and combined treatment on the 

expression of apoptotic markers as well as evaluate its 
effect on the nucleus morphology. A higher reduction 
in mRNA expression levels of Bax (fig. 3a) and Bcl-2 
(fig. 3b) was observed in the combined treatment group 
than the single ones. In addition, highly number of 
apoptotic cells was observed in the present of cisplatin 
and RF than these drugs alone (fig. 4a). Further, 
protein expression analysis of p53 protein showed a 
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Fig. 3: Expression of pro- and antiapoptosis genes in A549 cells 
The density of PCR bands of relative gene expression of apoptotic genes was done by ImageJ software. Data are shown as mean±SEM. 
***P<0.05 vs. control. Rf: ginsenoside (100 μM); C: cisplatin (1 μg/ml) 
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Fig. 4: Analysis of apoptotic activity of the single and combined drug treatment in A549 cells 
(a) Morphological changes in the nucleus were observed by Hoechst 33258 assay after the following treatment: A. untreated cells, B. 
Rf at 100 µM, C. cisplatin at 1 µg/ml and D. cisplatin at 1 µg/ml + Rf at 100 µM. Apoptotic cells are indicated with arrows. Scale bar: 
10 μm. (b) Western blot analysis of expression of the pro-apoptotic p53 protein. (c-e) mRNA expression analysis of apoptotic related 
genes normalized to GAPDH. Results are representative of three independent experiments. Data are shown as mean±SEM. **P<0.05 
vs. control. ##P<0.05 vs. cisplatin alone. Rf: ginsenoside (100 μM); C: cisplatin (1 μg/ml) 
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significant increase in the presence of the combined 
treatment (fig. 4b). Also, mRNA expression of p53, p21 
and caspase 3 genes was higher in the combined group 
(fig. 4c-e). In previous studies, was reported that the 
genes, Bcl-2 and Bax, can be capable of independent 
regulation of a common apoptotic pathway[18]. Besides, 
some studies indicated that a decrease in the expression 
levels of Bax is associated with cisplatin resistance 
and Mutation of p53 gene[19]. This mutation of the p53 
gene was previously reported in A549 cells[20]. For this 
reason, we suggest that the independent regulation of 
Bax and Bcl-2 genes and increase in the pro-apoptotic 
markers in A549 cells observed during the combined 
treatment with Rf and cisplatin might be involved in 
the induction of morphological changes of the nucleus 
visualized through Hoechst 33258 staining. 

The activation of epithelial growth factor receptors 
(EGFR) by cisplatin had been reported previously[21]. 
This phosphorylation of EGFR leads to the activation 
of different pathways and with this the initiation of 
other processes, such as migration and invasion[22]. 
Since metastasis represent the major problem in the 
treatment of cancer and involves multiple processes 
such cell migration[23], evaluation of the ability of the 
combined treatment with Rf and cisplatin to reduce 
the phosphorylation of EGFR and cell migration 
was evaluated. It was found that Rf (alone) did not 
modify the expression of phospho-EGFR. On the 
other hand, the combined treatment with Rf and 
cisplatin reduced the expression of phospho-EGFR 
previously enhanced by cisplatin (fig. 5). Also, was 
observed that the combined drug treatment induces a 
higher decreased on cell migration than single drug 
treatment (fig. 6a and b). Next, in order to define if 
the scratch assay result were related to cell migration 
and not to the, evaluation of mRNA levels of cadherin, 
snail and slug genes, which are related to epithelial-
mesenchymal transition (EMT) process because of its 
relation to wound healing and cancer progression[24]. 
Our results have shown the increase in the expression 
of e-cadherin gene (fig. 6c) and the decrease of snail 
and slug genes (fig. 6d-e) for the combined drug 
treatment, this effect was significantly different in 
comparison with the cisplatin treatment alone. This 
finding suggested an antimigratory activity of Rf in the 
presence of cisplatin though a possible shift of motile 
mesenchymal cells, EGF-stimulated A549 cells; into 
epithelial cells.

This study exposed for the first time the effect of 

ginsenoside Rf (Rf) in the combination of cisplatin 
against A549 a lung-carcinoma cell line. It was 
observed that Rf at 100 µM enhanced the cytotoxicity, 
apoptotic and the effect on cell motility of cisplatin at 
1 µg/ml. It is envisaged that further studies are needed 
by the use of other cancer cell lines to determinate 
whether the effect is observed in other cancer cells or if 
is specific to A549 lung cancer cells.
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Fig. 5: Analysis of epithelial growth factor receptor (EGFR) 
pathway
(a) Immunoblotting of phospho-EGFR and EGFR proteins in 
presence or absence of treatment. (b) Density analysis of PCR 
bands was done by Image J software. (c) mRNA expression 
of EGFR gene normalized to GAPDH. Data are shown as 
mean±SEM. **P<0.05 vs. control. Rf: ginsenoside (100 μM); C: 
cisplatin (1 μg/ml)
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Fig. 6: Ginsenoside Rf and cisplatin reduce cell migration in A549 cells 
(a) Photographs of A549 cells were taken at the beginning of the scratch assay and after 24 h. Scale bar: 50 μm. (b) Percentage of the 
scratch gap width after 24 h. (c-e) Evaluation of the mRNA levels for epithelial and mesenchymal genes. Each column represents 
the mean±SEM. ++P<0.05 Control versus EGF-Control. **P<0.05 versus EGF-control. ##P<0.05 versus cisplatin alone. EGF: epidermal 
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