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In current liquid-liquid separation systems, water-
immiscible volatile organic solvents are widely used 
with their good extraction performance. But in the 
perspective of environmental issues of these hazardous 
solvents, there is a growing interest in fi nding 
greener replacements for liquid-liquid separation 
in industry and academic research.   In recent years, 
aqueous biphasic systems (ABSs) aiming at avoiding 
the use of organic solvents as extractive phases 
have developed and been shown to be effective for 
separating organics[1,2], metals[3], carbon nanotubes[4,5], 
and biological compounds[6,7]. ABSs are composed of 
two aqueous-rich phases formed by polymer/polymer, 
polymer/salt, or salt/salt combinations. The basis of 
separation in ABSs is a direct result of the equilibration 
and selective distribution of target (bio) molecules 
between the two distinct aqueous phases. 

Lately, ionic liquids (ILs  , by defi nition salts which 
have melting points less than 100°) emerged as 
promising and alternative green replacements for 

ordinary organic solvents[8,9], due to their chemical 
and thermal stabilities, negligible volatility, general 
non-fl ammability, and great   dissolving ability for a 
wide variety of compounds[10,11].   Since 2003, Gutowski 
et al.[12] found imidazolium-based ILs can also form 
ABSs with inorganic salt of K3PO4. ABSs-based on ILs 
have received great attention in the fi eld of liquid-liquid 
separations with their novel extractive ability and the 
  feature of being environment friendly[13,14]. However, 
the synthesis of ILs is complex and expensive, 
which limit the large-scale industrial applications 
and development of ILs. As a new class of ILs or ILs 
analogue,     the deep eutectic solvents (DES) has similar 
physical properties and phase behavior[15] to traditional 
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ILs[16,17].   DES can be synthesized easily using a certain 
molar ratio of two or three non-expensive components, 
which are capable of self-association through hydrogen 
bond interactions[18,19]. Also, the excellent sustainable 
and biodegradable properties of DES highlight 
their advantages as promising non-toxic green 
solvents[15,20].   DES has shown excellent performance in 
adsorption[21,22], organics extraction[23,24] and bioactive 
compounds separation[25,26].   So, as a candidate ILs, 
DES is a promising green solvent to form ABSs with 
potential great value in the fi eld of extraction and 
separation.

  Amino acids are building blocks of proteins and can be 
employed as elements   or intermediates in antibodies, 
chelating agents and polypeptides[27-30].  These wide 
applications make amino acids play a vital role in daily 
routines and manufacture[31]. Separation and purification 
of amino acids are important and have crucial research 
value in human life. Traditional methods such as 
solid-liquid adsorption[32-34], extraction with organic 
solvents[35-37], ion-exchange[38], centrifugation[39,40] 
and chromatography[39,41] are expensive and time 
consuming, and are not easily scalable[42]. Moreover, 
the operational environment is not mild in many cases, 
which may result in amino acid inactivation. So fi nding 
new methods for easy and low-cost extraction of amino 
acids along with bioactivity retention has become an 
instant issue for biotechnology. The use of environment 
friendly and economical DES-based ABSs would be a 
good strategy.

In this paper, choline chloride (ChCl)/polyethylene 
glycol-based DES was synthesized and characterized. 
A series of ABSs composed of the synthesized DES 
and salt (Na3C6H5O7, Na2CO3, NaH2PO4, or K2HPO4) 
solutions were established and applied for the 
extraction of tryptophan for the first time. Some of 
the si  gnifi cant factors effecting the extraction, such as 
the species and amount of salts, the concentration of 
tryptophan, the dosage of DES, and the temperature 
were optimized. The chemical nature of tryptophan 
before and after extraction was investigated using 
UV/Vis and fl uorescence spectrometer.

MA  TERIALS AND METHODS 

All reagents used were of an  alytical grade (AR) and 
purchased from Sinopharm Chemical Reagent Co., 
Ltd., Shanghai, China without further purifi cation but 
p olyethylene glycol 2000 (PEG, chemically pure) was 
dried under vacuum before use. Double-distilled water 
was used throughout the experiments. L-tryptophan 

with a purity >99.0 % w/w was employed to investigate 
the extraction capacity. 

Sy  nthesis and characterization of DES:

DES was synthesized by stirring two eutectic mixture at 
110° till a homogeneous, colorless liquid was formed. 
Th e investigated DES was based on ChCl and PEG 
with a certain mass ratio (PEG = 50, 60, 70, 80, 90, 
100 %) according the process reported by Li et al.[43]. 
Th  e structure of the synthetic DES was confi rmed using 
elemental analyses, thermogravimetric analysis (TGA) 
and Fourier-transform infrared spectroscopy (FT-IR).

El  emental analysis was carried out on an Element 
analyzer (Flash1112A) by weighting 2.3 mg samples in 
a tinfoil. TG  A was done on STA-449C Jupiter (Netzsch 
Corporation, Germany). The sample was tested from 
room temperature to 800° with a heating rate of 
10°/min under air atmosphere with airfl ow of 60 l/min. 
FT-IR spectra of samples were measured on a Nicolet 
Avatar-370 spectrometer at room temperature using the 
standard KBr disk method.

Phase diagram:

The phase diagrams were recorded by turbidimetric 
method under room temperature[44]. DE  S solution 
(1.5 ml, 50 %, w/w) was added into a 10 ml centrifuge 
tube. Sa turated solution of Na3C6H5O7 (or other salts) 
was added dropwise and shaken until the appearance 
of a cloudy solution. This was followed by dropwise 
addition of water to make the mixture clear again. The 
above process was repeated to obtain suffi cient data to 
construct a liquid-liquid equilibrium phase diagram.

Ex  traction of tryptophan:

A certain amount of DES, salt (Na3C6H5O7, Na2CO3, 
NaH2PO4, or K2HPO4) and tryptophan solution were 
added into graduated tubes, respectively. Afterwards, 
the biphasic solutions were left to equilibrate for 
30 min (a time period established by shaking 
vigorously) to achieve a complete tryptophan 
partitioning between the two phases. The concentration 
of amino acid, in both phases, was determined on 
a UV/Vis spectrophotometer at a wavelength of 
278 nm. A calibration curve obtained in the range 
of 0-0.1 g/l was A = 25.52 C+0.027 (R2=0.9993), 
where C (g/l) is the concentration of amino acid and 
A is the UV absorbance. Partitioning of tryptophan 
between the two phases were characterized by the 
partition coeffi cient (K), phase volume ratio (R), and 
extraction effi ciency (E %), which can be calculated by 
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the following Eqns. 1, 2 and 3, K = Ct/Cb; R = Vt/Vb; 
E   % = CtVt/(CtVt+CbVb)×100, where Ct and Cb (g/l) 
are the concentrations of tryptophan in the DES-rich 
top phase and salt-rich bottom phase, respectively. Vt 
and Vb (ml) stand for the volume of the top and bottom 
phase, respectively.

RE   SULTS AND DISCUSSION

A series of DESs were synthesized with different 
mass ratios of ChCl and PEG, and the melting points 
were detected using a meldometer (fi g. 1). DES had a 
minimum melting point at 60 % of PEG mass fraction 
(Ch Cl:PEG = 2:3, w/w), and this DES with the mass 
ratio of 2:3 (ChCl:PEG) was chosen for the later 
investigation[45]. El  emental analysis of the prepared 
DES is listed in Table 1. The analysis value was 
approximated with the calculated value. It indicated 
that there was no mass defect in the process of the 
reaction.

The TGA, DSC and DTG curves for DES, PEG and 
ChCl are shown in fi g. 2. The decomposition of PEG 
and ChCl were 259.7 and 316.7°, respectively. After 
DES is formed, the weight loss was divided into two 
steps, which were just assigned to its two reactants. 
According to the DSC curves of DES, the fi rst step was 
an endothermic process attributed to the thermolysis of 
PEG, while the second step was an exothermic process 
attributed to the thermolysis of ChCl.

FT-IR spectra of the ChCl, PEG and DES are shown 
in fi g. 3. The bands between 3000 and 2700 cm−1 

corresponded to the stretching vibration of C-H in 
ChCl and DES. Compared with ChCl, the redshift of 
the peak of C–O (from 960 to 950 cm−1) in DES was 
clearly seen, indicated that large amount of the stable 
hydrogen bonds were formed[24]. The main characteristic 
peaks of ChCl and PEG could be observed in the FT-
IR spectrum of DES, which identified that functional 
groups of reactant were stable when the reaction was 
processing. 
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Fig. 2: (a) TGA, (b) DSC and (c) DTG curves for DES, PEG 
and ChCl
(▬▬) DES; (▬▬) PEG; (▬▬) ChCl

DES C % H % N %
Calculated value 49.47 9.28 1.75
Analysis found 49.01 9.38 1.62

TABLE 1: ELEMENTAL ANALYSIS OF C, H, N OF 
THE PREPARED DES
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Liquid-liquid equilibrium data were signifi cant for the 
design of aqueous biphasic extraction process. In this 
study, the equilibrium compositions of the ABSs, DES 
(1)+salt (Na3C6H  5O7, Na2CO3, NaH2PO4, or K2HPO4) 
(2)+H2O (3), determined at 298 K are shown in 
fi g. 4. These binodal curves can provide the information 
about the concentration fractions of DES and salt 
required to form an ABS. The region above the curve 
represented the biphasic system, while the system was 
a homogeneous phase below the curve. In addition, 
larger biphasic region indicated stronger ability for the 
salts to undergo ABS[46]. It can be seen from fi g. 4 that 
the phase-forming ability of salts followed the order: 
Na2CO3    >Na3C6H 5O7>K2HPO4>NaH2PO  4.

The ex traction effi ciency of tryptophan was investigated 
in a series of ABSs employing 0.28 g/ml of DES and 
0.14 g/ml of different salts of Na3C6H5O7, Na2CO3, 

NaH2PO4 or K2HPO4. As shown in fi g. 5a, it was 
obvious that DES-Na2CO3 ABS showed the highest 
extraction effi ciency of tryptophan, and the extraction 
effi ciency in DES-based ABSs with different salt 
species followed the order of Na2CO3>Na3C6H5O7>
K2HPO4>NaH2PO4, which were in agreement with the 
phase-forming order mentioned previously. 

Effect of tryptophan concentration on the extraction 
effi ciency in series DES-based ABSs with different 
salts was investigated and shown in fi g. 5b. Although 
there were some swings along the way, the extraction 
effi ciency of tryptophan decreased slowly with the 
increase of the concentration of tryptophan in overall 
trend for these DES-based ABSs. The reason was 
proposed that both the formation of ABS and the 
extraction of the target are depended on the competition 
for the water molecule[47]. The massive addition of 
tryptophan will weaken the water affi nity to the DES 
and cause the extraction of tryptophan decline in DES-
rich top phase in the ABSs. The optimum concentration 
of tryptophan was 0.05 g/l.

The amount of DES was a signifi cant factor that 
infl uences the extraction of tryptophan for ABSs and 
the result is shown in Table 2. With the increase of DES, 
the extraction effi ciency of tryptophan in DES-based 
ABSs with Na2CO3, NaH2PO4, K2HPO4 and Na3C6H5O7 
fi rstly continually increased, then reached the maximum 
values, and then decreased except DES-Na  3C6H5O7 
system. When the DES amount was more than 1.3 g 
(0.46 g/ml), there was not enough water to dissolve the 
DES, and the bi-phase system can’t be formed. This 
result indicated that DES could promote the extraction 
of tryptophan at a suitable range, and the optimum 
amount of DES is 0.28, 0.46, 0.40 and 0.40 g/ml
for the four ABSs of DES-Na2CO3, DES-Na3C6H5O7, 
DES-NaH2PO4 and DES-K2HPO4, respectively.

The effect of the addition of salts on the miscibility of 
a given system is very complex. As the salts dissolve 
in solvent, the ions are surrounded by a layer of water 
molecules. In the ABS, different compositions possesses 
diverse ions, and different types of intermolecular 
interactions exist in the system[48]. Then the extraction 
target is added in the disordered system increasing 
another rival to compete the quantifi cational water 
molecules. As shown in Table 3, with the increase of the 
dosage of salt, the extraction effi ciency of tryptophan 
changed regularly and reached the maximum values 
of 85.86, 86.2, 88.41 and 91.55 % at their optimum 
dosage conditions for DES-based ABSs with Na2CO3, 
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Na3C6H5O7, NaH2PO4 and K2HPO4, respectively. What 
needs to be mentioned is that the aqueous   biophase 
can’t be formed when the salt amo unt is outside the 
extreme scope.

The extraction effi ciencies of tryptophan in the four 
ABSs at temperatures ranging from 288-328 K were 
measured, and the results are shown in fi g. 5c. As the 
temperature increased from 288 to 328 K, the extraction 

effi ciencies decreased to various extents. The DES-
Na2CO3 system was more sensitive than the other three 
ABSs, the decrement value could reach approximately 
26 % while the Na3C6H5O 7 and NaH2PO4 systems reach 
about 15 %, the K2HPO4 system reach about 8 %. The 
possible reason might be that the water solubility of 
Na2CO3 is low and sensitive to temperature, which 
cause more tryptophan distributed into the salt-

DES (g/ml) Salt (g/ml) K R E % DES (g/ml) Salt (g/ml) K R E %
Na2CO3 Na3C6H5O

0.16 0.14 5.40 0.46 71.16 0.28 0.14 2.66 1.26 77.02
0.20 0.14 4.56 0.56 71.72 0.32 0.14 2.68 1.30 77.70
0.24 0.14 5.93 0.71 80.81 0.36 0.14 2.71 1.33 78.28
0.28 0.14 6.33 0.92 85.35 0.40 0.14 2.73 1.48 80.16
0.32 0.14 3.22 0.82 72.62 0.46 0.14 2.87 1.61 82.21

NaH2PO4 K2HPO4

0.28 0.14 1.74 1.63 73.92 0.28 0.14 2.48 0.86 68.08
0.32 0.14 1.87 1.71 76.18 0.32 0.14 3.58 1.17 80.73
0.36 0.14 2.02 1.89 79.24 0.36 0.14 4.04 1.23 83.25
0.40 0.14 2.33 2.26 84.04 0.40 0.14 5.09 1.25 86.42
0.46 0.14 1.31 2.64 77.57 0.46 0.14 3.97 1.42 84.93

TABLE 2: EFFECT OF DES AMOUNT ON THE EXTRACTION EFFICIENCY OF TRYPTOPHAN

DES (g/ml) Salt (g/ml) K R E % DES (g/ml) Salt (g/ml) K R E %
Na2CO3   Na3C6H5O7

0.28 0.05 3.87 0.99 79.30 0.46 0.10 1.81 1.90 77.47
0.28 0.08 4.27 0.97 80.55 0.46 0.14 2.90 1.64 82.63
0.28 0.11 5.81 0.95 84.66 0.46 0.18 3.92 1.57 86.20
0.28 0.14 6.53 0.93 85.86 0.46 0.22 4.07 1.21 83.12
0.28 0.17 8.57 0.51 81.38 0.46 0.26 4.85 1.01 83.05

NaH2PO4

0.40 0.10 2.18 3.50 88.41 0.40 0.10 2.22 1.74 79.42
0.40 0.14 2.32 2.28 84.10 0.40 0.14 4.94 1.28 86.34
0.40 0.18 3.09 0.93 74.18 0.40 0.18 5.66 1.15 86.69
0.40 0.22 1.99 0.93 64.85 0.40 0.22 9.11 0.92 89.34
0.40 0.26 2.50 0.65 61.76 0.40 0.26 12.53 0.86 91.55

TABLE 3: EFFECT OF SALT MASS ON THE EXTRACTION EFFICIENCY OF TRYPTOPHAN

  Fig. 5: Effect of salt species, tryptophan concentration and temperature on extraction effi ciency
Effect of (a) salt species, CDES: 0.28 g/ml, Csalt: 0.14 g/ml, Ctryptophan:1.6 g/l, 298 K, (b) tryptophan concentration, (▬▼▬) Na2CO3, 
(▬■▬) Na3C6H5O7, (▬▲▬) NaH2PO4, (▬●▬) K2HPO4 and (c) temperature, (▬●▬) K2HPO4 (ABS-1), (▬▲▬) NaH2PO4 (ABS-
2), (▬■▬) Na3C6H5O7 (ABS-3), (▬▼▬) Na2CO3 on the extraction effi ciency of tryptophan
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rich phase with the temperature enhanced[49]. The 
increased temperature intensify the phenomenon of 
Brownian motion, and the molecules in the ABS are 
active to transfer between the two phase leading to 
homogeneous distribution[50]. ABS-1 composition was 
0.40 g/ml DES+0.26 g/ml K2HPO4; ABS-2 was 0.4 g/m
l DES+0.10 g/ml NaH2PO4; ABS-3 was 0.46 g/ml 
DES+0.18 g/ml Na3C6H5O7 and ABS-4 was 0.28 g/ml 
DES+0.14 g/ml Na2CO3; Ctryptophan: 0.05 g/l; 288-328 K.

In order to investigate the tryptophan confi rmation 
before and after extraction, UV/Vis and fl uorescence 
spectra of tryptophan were studied[51]. Fig. 6a 
illustrates the UV/Vis spectra of tryptophan in water 
before extraction and in DES-rich phase of ABSs after 
extraction. It is clear that the curves appeared similar 
shape, the maximum absorption peak before and after 
extraction is at the same position of 278 nm. Fig. 6b 
shows the fl uorescence emission spectra for tryptophan 
in the presence of DES at λex=273 nm, the characteristic 
peak of tryptoph   an in water and in DES-rich solution 
both appeared at 358 nm. While the excitation spectra at 
λem=358 nm followed the similar situation. The results 

indicated that there were no chemical interactions 
between the tryptophan and DES in the extraction 
process. The DES-based ABSs can provide a gentle 
environment for the extraction of tryptophan.

DES was successfully synthesized with proper mass 
ratios of ChCl and PEG, and DES-salt (Na3C6H5O7, 
Na2CO3, NaH2PO4, or K2HPO4) ABSs were established 
and applied for tryptophan extraction. DES-Na2CO3 
ABS showed the strongest phase-forming ability. 
After the optimization of extraction conditions, the 
extraction effi ciency of tryptophan can reach 93.88 %
  (DES-K2HPO4 ABS), 90.83 % (DES-NaH2PO4 ABS), 
88.88 % (DES-Na3C6H5O7 ABS) and 86.72 % (DES-
Na2CO3 ABS), respectively, under the optimum 
conditions. Finally, UV/Vis and fl uorescence spectra 
confirmed the structure of tryptophan had no change 
after extraction. DES-based ABSs can provide a mild 
environment and have potential applications in the 
high effi cient extraction and purifi cation of biological 
substances.
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